ComSim: A Bipartite Community Detection Algorithm Using Cycle and Node's Similarity

[1]  Josep-Lluís Larriba-Pey,et al.  High quality, scalable and parallel community detection for large real graphs , 2014, WWW.

[2]  Daniel B. Larremore,et al.  Efficiently inferring community structure in bipartite networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Jure Leskovec,et al.  Overlapping community detection at scale: a nonnegative matrix factorization approach , 2013, WSDM.

[4]  Jure Leskovec,et al.  Defining and evaluating network communities based on ground-truth , 2012, Knowledge and Information Systems.

[5]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[6]  Albert-László Barabási,et al.  Flavor network and the principles of food pairing , 2011, Scientific reports.

[7]  Tsuyoshi Murata,et al.  Community Detection in Large-Scale Bipartite Networks , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[8]  Carl T. Bergstrom,et al.  The map equation , 2009, 0906.1405.

[9]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[10]  Linyuan Lü,et al.  Predicting missing links via local information , 2009, 0901.0553.

[11]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[12]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[13]  Dominique Cardon,et al.  The Stength of Weak cooperation: A Case Study on Flickr , 2008, ArXiv.

[14]  S. Lehmann,et al.  Biclique communities. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  M. Barber Modularity and community detection in bipartite networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Battiston,et al.  Statistical properties of corporate board and director networks , 2004 .

[18]  Anne-Marie Kermarrec,et al.  Clustering in Peer-to-Peer File Sharing Workloads , 2004, IPTPS.

[19]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.

[20]  L. Freeman Finding Social Groups: A Meta-Analysis of the Southern Women Data , 2003 .

[21]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Ramon Ferrer i Cancho,et al.  The small world of human language , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[25]  E. C. Green,et al.  Southern Strategies: Southern Women and the Woman Suffrage Question , 1997 .

[26]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[27]  Burleigh B. Gardner,et al.  Deep South: A Social Anthropological Study of Caste and Class , 1942 .