On Bivariate Ranked Set Sampling for Distribution and Quantile Estimation and Quantile Interval Estimation Using Ratio Estimator

Abstract As an extension to ranked set sampling (RSS), bivariate ranked set sampling (BVRSS) was introduced by Al-Saleh and Zheng [Al-Saleh, M. F., Zheng, G. (2002). Estimation of bivariate characteristics using ranked set sampling. Aust. New Zealand J. Statist. 44:221–232] for multiple characteristics estimation. In this paper, BVRSS is investigated for estimating the joint and the marginal distribution functions using direct method of estimation. The estimation of a population quantiles of two characteristics based BVRSS, for given values of probability (p) using direct method of estimation, is investigated. Also, quantiles and quantiles intervals estimation, based on BVRSS, using ratio estimator is presented. It turns out that all the suggested estimators in this paper are more efficient than the corresponding estimators obtained by using bivariate SRS and the ordinary RSS with concomitant variable. Finally, the proposed methods are illustrated using real data set of the trees.

[1]  J. Rao,et al.  On estimating distribution functions and quantiles from survey data using auxiliary information , 1990 .

[2]  R. Chambers,et al.  Estimating distribution functions from survey data , 1986 .

[3]  Hani M. Samawi,et al.  Estimating the Population Mean Using Extreme Ranked Set Sampling , 1996 .

[4]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[5]  G. P. Patil,et al.  Ranked Set Sampling: a Bibliography , 2004, Environmental and Ecological Statistics.

[6]  T. Sager,et al.  Characterization of a Ranked-Set Sample with Application to Estimating Distribution Functions , 1988 .

[7]  Mohammad Fraiwan Al-Saleh,et al.  Theory & Methods: Estimation of bivariate characteristics using ranked set sampling , 2002 .

[8]  J. L. Clutter,et al.  Ranked Set Sampling Theory with Order Statistics Background , 1972 .

[9]  G. P. Patil,et al.  Ranked set sampling: an annotated bibliography , 1995, Environmental and Ecological Statistics.

[10]  G. McIntyre,et al.  A method for unbiased selective sampling, using ranked sets , 1952 .

[11]  Hani M. Samawi,et al.  On the Estimation of the Distribution Function Using Extreme and Median Ranked Set Sampling , 2001 .

[12]  R. R. Bahadur A Note on Quantiles in Large Samples , 1966 .

[13]  L. K. Halls,et al.  Trial of Ranked-Set Sampling for Forage Yields , 1966 .

[14]  Tak K. Mak,et al.  A new method for estimating finite‐population quantiles using auxiliary information , 1993 .

[15]  A. A. Cebrián,et al.  Quantile interval estimation in finite population using a multivariate ratio estimator , 1998 .

[16]  Ganapati P. Patil,et al.  Ranked set sampling , 2006 .

[17]  THE OPTIMAL RANKED-SET SAMPLING SCHEME FOR INFERENCE ON POPULATION QUANTILES , 2003 .

[18]  Stephen L. Rathbun,et al.  The Population Dynamics of a Long-Lived Conifer (Pinus palustris) , 1988, The American Naturalist.

[19]  Zehua Chen On ranked-set sample quantiles and their applications , 2000 .