Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi

[1]  J. Hobbie,et al.  Amino acid cycling in plankton and soil microbes studied with radioisotopes: measured amino acids in soil do not reflect bioavailability , 2012, Biogeochemistry.

[2]  R. Dahlgren,et al.  Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock , 2011, Nature.

[3]  I. Dickie,et al.  Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. , 2011, Ecology letters.

[4]  E. Hobbie,et al.  Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition , 2011 .

[5]  P. Sollins,et al.  Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity , 2011 .

[6]  Y. Kuzyakov Priming effects : interactions between living and dead organic matter , 2010 .

[7]  D. Metcalfe,et al.  Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. , 2010, The New phytologist.

[8]  K. Butterbach‐Bahl,et al.  Simulating mycorrhiza contribution to forest C- and N cycling-the MYCOFON model , 2010, Plant and Soil.

[9]  E. Hobbie,et al.  Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types , 2010, Plant and Soil.

[10]  M. Garnett,et al.  Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. , 2009 .

[11]  P. Sollins,et al.  Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization , 2009 .

[12]  F. Rineau,et al.  Effects of liming on ectomycorrhizal community structure in relation to soil horizons and tree hosts , 2009 .

[13]  S. Trumbore Radiocarbon and Soil Carbon Dynamics , 2009 .

[14]  K. Kielland,et al.  Uptake of organic nitrogen by plants. , 2009, The New phytologist.

[15]  Katharine Hayhoe,et al.  Potential effects of climate change and rising CO2 on ecosystem processes in northeastern U.S. forests , 2008 .

[16]  L. Montecchio,et al.  Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands , 2008, European Journal of Forest Research.

[17]  R. B. Jackson,et al.  Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2 , 2007, Proceedings of the National Academy of Sciences.

[18]  P. Courty,et al.  Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community , 2007 .

[19]  S. Trumbore,et al.  Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. , 2007, The New phytologist.

[20]  P. Sollins,et al.  Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation , 2006 .

[21]  I. Anderson,et al.  Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. , 2006, The New phytologist.

[22]  H. Blaschke,et al.  Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps , 2006, Mycorrhiza.

[23]  J. Baldock,et al.  Does Solid-state 15N NMR Spectroscopy Detect all Soil Organic Nitrogen? , 2005 .

[24]  William J. Parton,et al.  Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input , 2005 .

[25]  A. Hodge,et al.  Dissolved organic nitrogen uptake by plants—an important N uptake pathway? , 2005 .

[26]  J. Schimel,et al.  NITROGEN MINERALIZATION: CHALLENGES OF A CHANGING PARADIGM , 2004 .

[27]  W. Amelung Nitrogen biomarkers and their fate in soil , 2003 .

[28]  F. Chapin,et al.  Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems , 2003 .

[29]  J. Pérez‐Moreno,et al.  Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? , 2003, The New phytologist.

[30]  R. Koide,et al.  Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. , 2002, The New phytologist.

[31]  N. S. Weber,et al.  Using radiocarbon to determine the mycorrhizal status of fungi , 2002 .

[32]  Andy F. S. Taylor,et al.  Defining nutritional constraints on carbon cycling in boreal forests – towards a less `phytocentric' perspective , 2002, Plant and Soil.

[33]  T. Fahey,et al.  Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes , 2002 .

[34]  E. Rastetter,et al.  Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra , 2002, Nature.

[35]  A. Hodge,et al.  An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material , 2001, Nature.

[36]  N. Buchmann,et al.  Large-scale forest girdling shows that current photosynthesis drives soil respiration , 2001, Nature.

[37]  N. S. Weber,et al.  Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence , 2001 .

[38]  B. Stephens,et al.  Winter CO2 fluxes in a boreal forest , 1997 .

[39]  H. Schulten,et al.  The chemistry of soil organic nitrogen: a review , 1997, Biology and Fertility of Soils.

[40]  J. Fortin,et al.  Dependence of Laccaria bicolor basidiome development on current photosynthesis of Pinus strobus seedlings , 1994 .

[41]  J. Vetter,et al.  Chitingehalt von höheren Pilzen , 1991 .

[42]  P. A. Mason,et al.  Influence of leaves on sporophore production by fungi forming sheathing mycorrhizas with Betula spp. , 1979, Nature.

[43]  P. E T E,et al.  Old and stable soil organic matter is not necessarily chemically recalcitrant : implications for modeling concepts and temperature sensitivity , 2010 .

[44]  R. Bol,et al.  Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter , 2008 .

[45]  J. Vetter CHITIN CONTENT OF CULTIVATED MUSHROOMS AGARICUS BISPORUS, PLEUROTUS OSTREATUS AND LENTINULA EDODES , 2007 .

[46]  I. Levin,et al.  RADIOCARBON - A UNIQUE TRACER OF GLOBAL CARBON CYCLE DYNAMICS , 2000 .

[47]  Kawak Ijen Volcano,et al.  Boreal forest plants take up organic nitrogen , 1998 .

[48]  S. Trumbore,et al.  Comparison of Fractionation Methods for Soil Organic Matter 14C Analysis , 1996, Radiocarbon.

[49]  E. Ohenoja Fruit body production of larger fungi in Finland. I: Introduction to the study in 1976-1978 , 1984 .