Motzkin Paths and Reduced Decompositions for Permutations with Forbidden Patterns

We obtain a characterization of (321, 3¯ permutations in terms of their canonical reduced decompositions. This characterization is used to construct a bijection for a recent result that the number of (321, 3¯ permutations of length n equals the n-th Motzkin number, due to Gire, and further studied by Barcucci, Del Lungo, Pergola, Pinzani and Guibert. Similarly, we obtain a characterization of (231, 4 ¯ permutations. For these two classes, we show that the number of descents of a permutation equals the number of up steps on the corresponding Motzkin path. Moreover, we find a relationship between the inversion number of a permutation and the area of the corresponding Motzkin path.

[1]  T. Apostol Introduction to analytic number theory , 1976 .

[2]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[3]  Alberto Del Lungo,et al.  From Motzkin to Catalan permutations , 2000, Discret. Math..

[4]  Renzo Sprugnoli,et al.  The Motzkin family , 1992 .

[5]  Igor Pak,et al.  Trees Associated with the Motzkin Numbers , 1996, J. Comb. Theory, Ser. A.

[6]  Robert Donaghey,et al.  Restricted plane tree representations of four Motzkin-Catalan equations , 1977, J. Comb. Theory, Ser. B.

[7]  Gary L. Ebert The completion problem for partial packings , 1985 .

[8]  Alberto Del Lungo,et al.  ECO:a methodology for the enumeration of combinatorial objects , 1999 .

[9]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[10]  Alberto Del Lungo,et al.  Some permutations with forbidden subsequences and their inversion number , 2001, Discret. Math..

[11]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[12]  Darla Kremer Permutations with forbidden subsequences and a generalized Schro"der number , 2000, Discret. Math..

[13]  Emeric Deutsch,et al.  A bijection between ordered trees and 2-Motzkin paths and its many consequences , 2002, Discret. Math..

[14]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[15]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[16]  S. Gire,et al.  Arbres, permutations à motifs exclus et cartes planaires : quelques problèmes algorithmiques et combinatoires , 1993 .

[17]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[18]  T. Motzkin,et al.  Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products , 1948 .

[19]  Christian Krattenthaler,et al.  Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..

[20]  D. Glynn On a set of lines of PG(3, q) corresponding to a maximal cap contained in the Klein quadric of PG (5, q) , 1988 .

[21]  Olivier Guibert Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .

[22]  RICHARD P. STANLEY,et al.  On the Number of Reduced Decompositions of Elements of Coxeter Groups , 1984, Eur. J. Comb..

[23]  M. Aigner,et al.  Motzkin Numbers , 1998, Eur. J. Comb..

[24]  P. Cameron,et al.  PERMUTATION GROUPS , 2019, Group Theory for Physicists.

[25]  Olivier Guibert,et al.  Vexillary Involutions are Enumerated by Motzkin Numbers , 2001 .

[26]  Robert Donaghey,et al.  Motzkin Numbers , 1977, J. Comb. Theory, Ser. A.

[27]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[28]  Toufik Mansour,et al.  Permutations Which Avoid 1243 and 2143, Continued Fractions, and Chebyshev Polynomials , 2002, Electron. J. Comb..

[29]  Kendra Killpatrick,et al.  A Weight-Preserving Bijection Between Schröder Paths and Schröder Permutations , 2002 .

[30]  Bertram Huppert,et al.  Singer-Zyklen in klassischen Gruppen , 1970 .