Motzkin Paths and Reduced Decompositions for Permutations with Forbidden Patterns
暂无分享,去创建一个
William Y. C. Chen | Eva Yu-Ping Deng | Laura L. M. Yang | William Y. C. Chen | E. Y. Deng | L. Yang
[1] T. Apostol. Introduction to analytic number theory , 1976 .
[2] J. Singer. A theorem in finite projective geometry and some applications to number theory , 1938 .
[3] Alberto Del Lungo,et al. From Motzkin to Catalan permutations , 2000, Discret. Math..
[4] Renzo Sprugnoli,et al. The Motzkin family , 1992 .
[5] Igor Pak,et al. Trees Associated with the Motzkin Numbers , 1996, J. Comb. Theory, Ser. A.
[6] Robert Donaghey,et al. Restricted plane tree representations of four Motzkin-Catalan equations , 1977, J. Comb. Theory, Ser. B.
[7] Gary L. Ebert. The completion problem for partial packings , 1985 .
[8] Alberto Del Lungo,et al. ECO:a methodology for the enumeration of combinatorial objects , 1999 .
[9] Chuan Yi Tang,et al. A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..
[10] Alberto Del Lungo,et al. Some permutations with forbidden subsequences and their inversion number , 2001, Discret. Math..
[11] Mike D. Atkinson,et al. Restricted permutations , 1999, Discret. Math..
[12] Darla Kremer. Permutations with forbidden subsequences and a generalized Schro"der number , 2000, Discret. Math..
[13] Emeric Deutsch,et al. A bijection between ordered trees and 2-Motzkin paths and its many consequences , 2002, Discret. Math..
[14] Zvezdelina Stankova,et al. Forbidden subsequences , 1994, Discret. Math..
[15] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[16] S. Gire,et al. Arbres, permutations à motifs exclus et cartes planaires : quelques problèmes algorithmiques et combinatoires , 1993 .
[17] Julian West,et al. Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..
[18] T. Motzkin,et al. Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products , 1948 .
[19] Christian Krattenthaler,et al. Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..
[20] D. Glynn. On a set of lines of PG(3, q) corresponding to a maximal cap contained in the Klein quadric of PG (5, q) , 1988 .
[21] Olivier Guibert. Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .
[22] RICHARD P. STANLEY,et al. On the Number of Reduced Decompositions of Elements of Coxeter Groups , 1984, Eur. J. Comb..
[23] M. Aigner,et al. Motzkin Numbers , 1998, Eur. J. Comb..
[24] P. Cameron,et al. PERMUTATION GROUPS , 2019, Group Theory for Physicists.
[25] Olivier Guibert,et al. Vexillary Involutions are Enumerated by Motzkin Numbers , 2001 .
[26] Robert Donaghey,et al. Motzkin Numbers , 1977, J. Comb. Theory, Ser. A.
[27] Julian West,et al. Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .
[28] Toufik Mansour,et al. Permutations Which Avoid 1243 and 2143, Continued Fractions, and Chebyshev Polynomials , 2002, Electron. J. Comb..
[29] Kendra Killpatrick,et al. A Weight-Preserving Bijection Between Schröder Paths and Schröder Permutations , 2002 .
[30] Bertram Huppert,et al. Singer-Zyklen in klassischen Gruppen , 1970 .