Prediction of Ship Acoustic Signature Due to Fluid Flow

The contribution of flow noise to the radiated acoustic signature of CFAV Quest is of interest. Quest is the research ship used by Defence R&D Canada as a quiet platform. It is difficult to identify the flow noise component in an acoustic ranging so there is interest in predicting the flow noise as a first step towards extracting it from range measurements. Below propulsor cavitation inception speeds, machinery-induced noise dominates. While flow noise does not usually dominate in the presence of machinery-induced noise or propulsor cavitation, it is unclear what fraction of the total noise power flow noise constitutes. A direct numerical simulation for a complex ship geometry was impractical so an alternative approach was sought. An immersed boundary method was used to model the presence of the ship in the flow domain. The unsteady flow field was calculated using a finite volume method over an unstructured Cartesian grid. The flow field around Quest in straight and level flight was calculated at Reynolds numbers between 1.8×108 and 4.3×108 , corresponding to a full-scale speed range of 4 to 10 knots. Results from such flow field predictions become the hydrodynamic sources in the integrals of Lighthill’s acoustic analogy to predict the far-field acoustic signature from the flow past the hull. These far-field predictions consist of computing the propagation and radiation of the hydrodynamic sources. This assumes noise generation and its propagation are decoupled. Under certain circumstances, knowledge of the predicted flow component helps to extract it from a standard acoustic ranging.Copyright © 2007 by Government of Canada