Quantum Integrable Models and Discrete Classical Hirota Equations

Abstract:The standard objects of quantum integrable systems are identified with elements of classical nonlinear integrable difference equations. The functional relation for commuting quantum transfer matrices of quantum integrable models is shown to coincide with classical Hirota's bilinear difference equation. This equation is equivalent to the completely discretized classical 2D Toda lattice with open boundaries. Elliptic solutions of Hirota's equation give a complete set of eigenvalues of the quantum transfer matrices. Eigenvalues of Baxter's Q-operator are solutions to the auxiliary linear problems for classical Hirota's equation. The elliptic solutions relevant to the Bethe ansatz are studied. The nested Bethe ansatz equations for Ak-1-type models appear as discrete time equations of motions for zeros of classical τ-functions and Baker-Akhiezer functions. Determinant representations of the general solution to bilinear discrete Hirota's equation are analysed and a new determinant formula for eigenvalues of the quantum transfer matrices is obtained. Difference equations for eigenvalues of the Q-operators which generalize Baxter's three-term T−Q-relation are derived.

[1]  A. Zabrodin,et al.  Hirota’s difference equations , 1997 .

[2]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[3]  P. Pearce,et al.  Solution of functional equations of restricted An−1(1) fused lattice models , 1995, hep-th/9502067.

[4]  A. Leznov,et al.  Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems , 1992 .

[5]  Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz , 1994, hep-th/9412229.

[6]  S. V. Talalov,et al.  Liouville field theory: IST and Poisson bracket structure , 1986 .

[7]  W. V. Hodge,et al.  Methods of algebraic geometry , 1947 .

[8]  J. Gervais,et al.  Extended C = ∞ conformal systems from classical toda field theories , 1989 .

[9]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .

[10]  Analytic Bethe ansatz for fundamental representations of Yangians , 1994, hep-th/9406180.

[11]  N. Saitoh,et al.  Gauge and dual symmetries and linearization of Hirota’s bilinear equations , 1987 .

[12]  S. Ruijsenaars,et al.  A new class of integrable systems and its relation to solitons , 1986 .

[13]  N. Reshetikhin,et al.  Yang-Baxter equation and representation theory: I , 1981 .

[14]  R. Hirota Discrete Two-Dimensional Toda Molecule Equation , 1987 .

[15]  L. Faddeev,et al.  Quantum inverse scattering method on a spacetime lattice , 1992 .

[16]  Integrable time-discretisation of the Ruijsenaars-Schneider model , 1994, hep-th/9412170.

[17]  N. Saitoh,et al.  Linearization of bilinear difference equations , 1987 .

[18]  Jacques H. H. Perk,et al.  Quadratic identities for Ising model correlations , 1980 .

[19]  A.Zabrodin,et al.  Spin generalization of the Ruijsenaars-Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra , 1995, hep-th/9505039.

[20]  M. Jimbo,et al.  AN $A_{n - 1}^{\left( 1 \right)} $ FAMILY OF SOLVABLE LATTICE MODELS , 1987 .

[21]  Fusion rules for Quantum Transfer Matrices as a Dynamical System on Grassmann Manifolds , 1997, solv-int/9704015.

[22]  W-Geometries , 1991, hep-th/9110028.

[23]  R. Baxter Partition function of the eight vertex lattice model , 1972 .

[24]  J. Thas,et al.  General Galois geometries , 1992 .

[25]  Mikio Sato Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .

[26]  Tai Tsun Wu,et al.  Ising Field Theory: Quadratic Difference Equations for the n -Point Green's Functions on the Lattice , 1981 .

[27]  Acknowledgements , 1992, Experimental Gerontology.

[28]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[29]  N. Reshetikhin,et al.  GL3-invariant solutions of the Yang-Baxter equation and associated quantum systems , 1986 .

[30]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[31]  A. Neveu,et al.  Novel Triangle Relation and Absence of Tachyons in Liouville String Field Theory , 1984 .

[32]  FUNCTIONAL RELATIONS IN SOLVABLE LATTICE MODELS I: FUNCTIONAL RELATIONS AND REPRESENTATION THEORY , 1993, hep-th/9309137.

[33]  R. Hirota Discrete Analogue of a Generalized Toda Equation , 1981 .

[34]  Michio Jimbo,et al.  Method for Generating Discrete Soliton Equations. I , 1983 .

[35]  N. Reshetikhin,et al.  Critical Rsos Models and Conformal Field Theory , 1989 .

[36]  A. Valleriani,et al.  DYNKIN TBA'S , 1992 .

[37]  P. Pearce,et al.  Conformal weights of RSOS lattice models and their fusion hierarchies , 1992 .

[38]  K. Takasaki,et al.  Toda lattice hierarchy , 1984 .

[39]  Igor Krichever,et al.  Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles , 1980 .

[40]  A. N. Kirrilov Completeness of states of the generalized Heisenberg magnet , 1987 .

[41]  M. Gaudin La fonction d'onde de Bethe , 1983 .

[42]  N. Reshetikhin,et al.  Restricted solid-on-solid models connected with simply laced algebras and conformal field theory , 1990 .

[43]  B. McCoy,et al.  Nonlinear Partial Difference Equations for the Two-dimensional Ising Model , 1980 .

[44]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[45]  Current-Like Variables in Massive and Massless Integrable Models , 1994, hep-th/9408041.

[46]  N. Reshetikhin,et al.  Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. II. Thermodynamics of the system , 1987 .

[47]  ClassicalAn-W-geometry , 1992, hep-th/9201026.

[48]  Yasuhiro Ohta,et al.  Casorati and Discrete Gram Type Determinant Representations of Solutions to the Discrete KP Hierarchy , 1993 .

[49]  U. Pinkall,et al.  The discrete quantum pendulum , 1993 .

[50]  I. Krichever,et al.  Spin generalization of the Ruijsenaars-Schneider model, the non-Abelian 2D Toda chain, and representations of the Sklyanin algebra , 1995 .

[51]  Evgeny Sklyanin,et al.  QUANTUM SPECTRAL TRANSFORM METHOD. RECENT DEVELOPMENTS , 1982 .

[52]  Toda lattice equation and Wronskians in the 2d Ising model , 1986 .

[53]  G. Segal,et al.  Loop groups and equations of KdV type , 1985 .