Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - V. Evidence for a wide age distribution and a complex MDF

Based on high-resolution spectra obtained during gravitational microlensing events we present a detailed elemental abundance analysis of 32 dwarf and subgiant stars in the Galactic bulge. Combined with the sample of 26 stars from the previous papers in this series, we now have 58 microlensed bulge dwarfs and subgiants that have been homogeneously analysed. The main characteristics of the sample and the findings that can be drawn are: (i) the metallicity distribution (MDF) is wide and spans all metallicities between [Fe/H] = −1.9 to +0.6; (ii) the dip in the MDF around solar metallicity that was apparent in our previous analysis of a smaller sample (26 microlensed stars) is no longer evident; instead it has a complex structure and indications of multiple components are starting to emerge. A tentative interpretation is that there could be different stellar populations at interplay, each with a different scale height: the thin disk, the thick disk, and a bar population; (iii) the stars with [Fe/H] ≲ −0.1 are old with ages between 10 and 12 Gyr; (iv) the metal-rich stars with [Fe/H] ≳ −0.1 show a wide variety of ages, ranging from 2 to 12 Gyr with a distribution that has a dominant peak around 4−5 Gyr and a tail towards higher ages; (v) there are indications in the [α/Fe]−[Fe/H] abundance trends that the “knee” occurs around [Fe/H] = −0.3 to −0.2, which is a slightly higher metallicity as compared to the “knee” for the local thick disk. This suggests that the chemical enrichment of the metal-poor bulge has been somewhat faster than what is observed for the local thick disk. The results from the microlensed bulge dwarf stars in combination with other findings in the literature, in particular the evidence that the bulge has cylindrical rotation, indicate that the Milky Way could be an almost pure disk galaxy. The bulge would then just be a conglomerate of the other Galactic stellar populations (thin disk, thick disk, halo, and ...?), residing together in the central parts of the Galaxy, influenced by the Galactic bar.

[1]  Seattle,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - Detailed abundance analysis of OGLE-2008-BLG-209S , 2009, 0903.3044.

[2]  D. Astronomy,et al.  Disentangling the Hercules stream , 2006, astro-ph/0612658.

[3]  Bangalore,et al.  Elemental abundance survey of the Galactic thick disc , 2005, astro-ph/0512505.

[4]  Astrophysics,et al.  The first chemical abundance analysis of K giants in the inner Galactic disc , 2010, 1004.2833.

[5]  Institute for Astronomy,et al.  Formation history, structure and dynamics of discs and spheroids in simulated Milky Way mass galaxies , 2011, 1105.0680.

[6]  F. Thevenin,et al.  Stellar Iron Abundances: Non-LTE Effects , 1999, astro-ph/9906433.

[7]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[8]  R. Wyse,et al.  Formation and evolution of the Galactic Bulge and Spheroid: Where did the Spheroid Gas Go? , 1992 .

[9]  University of Michigan,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 03/07/07 TRACING THE GALACTIC THICK DISK TO SOLAR METALLICITIES 1 , 2022 .

[10]  Abundances of Baade's Window Giants from Keck HIRES Spectra. I. Stellar Parameters and [Fe/H] Values , 2005, astro-ph/0510408.

[11]  M. Livio,et al.  THE WFC3 GALACTIC BULGE TREASURY PROGRAM: METALLICITY ESTIMATES FOR THE STELLAR POPULATION AND EXOPLANET HOSTS , 2010, 1011.0457.

[12]  P. Frinchaboy,et al.  The Bulge Radial Velocity Assay (BRAVA): II. Complete Sample and Data Release , 2011, 1112.1955.

[13]  Y. Watase,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .

[14]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[15]  D. Depoy,et al.  Metallicity of Red Giants in the Galactic Bulge from Near-Infrared Spectroscopy , 2000, astro-ph/0003116.

[16]  A. Sandage,et al.  Evidence from the motions of old stars that the Galaxy collapsed. , 1962 .

[17]  L. Greggio,et al.  Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry , 2003 .

[18]  Andreas Koch,et al.  KINEMATICS AT THE EDGE OF THE GALACTIC BULGE: EVIDENCE FOR CYLINDRICAL ROTATION , 2009, 0908.1109.

[19]  A. Gal-Yam,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[20]  J. Prieto,et al.  MOA 2012 BLG-320: Discovery and Observations of a Nova Candidate Towards the Galactic Bulge , 2012 .

[21]  S. Ortolani,et al.  The metal content of bulge field stars from FLAMES-GIRAFFE spectra - I. Stellar parameters and iron abundances , 2008, 0805.1218.

[22]  Judith G. Cohen,et al.  CLUES TO THE METALLICITY DISTRIBUTION IN THE GALACTIC BULGE: ABUNDANCES IN MOA–2008–BLG–310S AND MOA–2008–BLG–311S , 2009, 0904.2020.

[23]  Samuel Harvey Moseley,et al.  COBE diffuse infrared background experiment observations of the galactic bulge , 1994 .

[24]  P. Wozniak,et al.  Measurements of streaming motions of the Galactic bar with red clump giants , 2002, astro-ph/0210381.

[25]  COLOR-MAGNITUDE DIAGRAM DISTRIBUTION OF THE BULGE RED CLUMP STARS : EVIDENCE FOR THE GALACTIC BAR , 1994, astro-ph/9404026.

[26]  P. Coelho,et al.  BARS REJUVENATING BULGES? EVIDENCE FROM STELLAR POPULATION ANALYSIS , 2011, 1111.1736.

[27]  M. Weinberg,et al.  An Upper Limit to the Age of the Galactic Bar , 2002, astro-ph/0206199.

[28]  J. Holtzman,et al.  Wide Field Camera Observations of Baade's Window , 1993 .

[29]  Caltech,et al.  A High-Resolution Spectrum of the Extremely Metal-rich Bulge G Dwarf OGLE-2006-BLG-265 , 2006, astro-ph/0608680.

[30]  C. Chiappini,et al.  Chemical Similarities Between Galactic Bulge And Local Thick Disk Red Giant Stars , 2008, 0804.4124.

[31]  B. Gibson,et al.  Star formation history of barred disc galaxies , 2011, 1103.3796.

[32]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[33]  R. M. Rich,et al.  Spectroscopy and abundances of 88 K giants in Baade's Window , 1988 .

[34]  France.,et al.  A standard stellar library for evolutionary synthesis - II. The M dwarf extension , 1997, astro-ph/9710350.

[35]  M. Pinsonneault,et al.  OGLE-III DETECTION OF THE ANOMALOUS GALACTIC BULGE RED GIANT BRANCH BUMP: EVIDENCE OF ENHANCED HELIUM ENRICHMENT , 2010, 1011.4293.

[36]  C. Sneden,et al.  Oxygen abundances in halo giants. II : Giants in the globular clusters M13 and M3 and the intermediately metal-poor halo field , 1992 .

[37]  Pierre Demarque,et al.  The Y2 Stellar Evolutionary Tracks , 2002, astro-ph/0210201.

[38]  M. Livio,et al.  THE FIRST DETECTION OF BLUE STRAGGLER STARS IN THE MILKY WAY BULGE , 2011, 1105.4176.

[39]  S. Ortolani,et al.  Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants , 2011, 1103.6104.

[40]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[41]  R. Michael Rich,et al.  Abundances of Baade’s Window Giants from Keck HIRES Spectra. II. The Alpha and Light Odd Elements , 2006, astro-ph/0609087.

[42]  K. Fuhrmann Nearby stars of the Galactic disc and halo – IV , 2008 .

[43]  F. Thevenin,et al.  The angular sizes of dwarf stars and subgiants Surface brightness relations calibrated by interferometry , 2004, astro-ph/0404180.

[44]  R. Rich,et al.  The First Detailed Abundance Analysis of Galactic Bulge K Giants in Baade's Window , 1994 .

[45]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[46]  R. Rich,et al.  The Bulge Radial Velocity Assay: Techniques and a Rotation Curve , 2006, astro-ph/0611403.

[47]  On the nature of bulges in general and of box/peanut bulges in particular: input from N-body simulations , 2005 .

[48]  Robert C. Kennicutt,et al.  Secular Evolution and the Formation of Pseudobulges in Disk Galaxies , 2004, astro-ph/0407343.

[49]  P. François,et al.  Galactic chemical evolution: abundance gradients of individual elements , 1989 .

[50]  Judith G. Cohen,et al.  Clues to the Metallicity Distribution in the Galactic Bulge: Abundances in OGLE-2007-BLG-349S , 2008, 0801.3264.

[51]  C. Brook,et al.  Chemodynamical analysis of bulge stars for simulated disc galaxies , 2009, 0909.4491.

[52]  Testing the universal stellar IMF on the metallicity distribution in the bulges of the Milky Way and M 31 , 2007, astro-ph/0702047.

[53]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[54]  P. Prugniel,et al.  The formation of galaxy bulges: Spectrophotometric constraints , 2001 .

[55]  J. C. Beamin,et al.  VISTA Variables in the Via Lactea (VVV): Current Status and First Results , 2010 .

[56]  J. Tumlinson CHEMICAL EVOLUTION IN HIERARCHICAL MODELS OF COSMIC STRUCTURE. II. THE FORMATION OF THE MILKY WAY STELLAR HALO AND THE DISTRIBUTION OF THE OLDEST STARS , 2009, 0911.1786.

[57]  Pierre Demarque,et al.  The Revised Yale Isochrones and Luminosity Functions , 1984 .

[58]  R. Ibata,et al.  THE ORIGIN OF THE SPLIT RED CLUMP IN THE GALACTIC BULGE OF THE MILKY WAY , 2012, 1207.0888.

[59]  D. Minniti,et al.  MAPPING THE X-SHAPED MILKY WAY BULGE , 2011, 1107.5360.

[60]  A. McWilliam,et al.  TWO RED CLUMPS AND THE X-SHAPED MILKY WAY BULGE , 2010, 1008.0519.

[61]  Judith G. Cohen,et al.  A PUZZLE INVOLVING GALACTIC BULGE MICROLENSING EVENTS , 2009, 0911.5081.

[62]  K. Bekki,et al.  TWO-COMPONENT GALACTIC BULGE PROBED WITH RENEWED GALACTIC CHEMICAL EVOLUTION MODEL , 2012, 1201.1019.

[63]  R. Rich,et al.  Near-coeval formation of the Galactic bulge and halo inferred from globular cluster ages , 1995, Nature.

[64]  The Optical Gravitational Lensing Experiment. the Early Warning System , 1994, astro-ph/9408026.

[65]  C. Babusiaux,et al.  Insights on the Milky Way bulge formation from the correlations between kinematics and metallicity , 2010, 1005.3919.

[66]  A. Serna,et al.  Formation of galaxies in Λcold dark matter cosmologies – I. The fine structure of disc galaxies , 2012, 1201.2641.

[67]  William J. Schuster,et al.  Two distinct halo populations in the solar neighborhood - Evidence from stellar abundance ratios and kinematics , 2010, 1002.4514.

[68]  S. Feltzing,et al.  Chemical constraints on the formation of the Galactic thick disk , 2011, 1110.0905.

[69]  Austria,et al.  Constraining the structure and formation of the Galactic bulge from a field in its outskirts. FLAMES-GIRAFFE spectra of about 400 red giants around (l,b)=(0{\deg},-10{\deg}) , 2012, 1206.3469.

[70]  F. Matteucci,et al.  Chemical evolution of the Galactic bulge: different stellar populations and possible gradients , 2012, 1209.4462.

[71]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[72]  Jennifer A. Johnson,et al.  A High-Resolution Spectrum of the Highly Magnified Bulge G Dwarf MOA-2006-BLG-099S , 2008, 0801.2159.

[73]  R. Rich,et al.  OUR MILKY WAY AS A PURE-DISK GALAXY—A CHALLENGE FOR GALAXY FORMATION , 2010, 1005.0385.

[74]  E. Brocato,et al.  Metallicity distribution and abundance ratios in the stars of the Galactic bulge , 1990 .

[75]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[76]  A. Gould,et al.  RECONCILING THE GALACTIC BULGE TURNOFF AGE DISCREPANCY WITH ENHANCED HELIUM ENRICHMENT , 2011, 1112.1072.

[77]  Jennifer A. Johnson,et al.  CHEMICAL COMPOSITION OF FAINT (I ∼ 21 mag) MICROLENSED BULGE DWARF OGLE-2007-BLG-514S , 2009, 0910.1358.

[78]  S. Lucatello,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars IV. Two bulge populations , 2011, 1107.5606.

[79]  USA,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[80]  M. Livio,et al.  Stellar Proper Motions in the Galactic Bulge from Deep Hubble Space Telescope ACS WFC Photometry , 2008, 0809.1682.

[81]  Naohito Nakasato,et al.  CHEMODYNAMICAL SIMULATIONS OF THE MILKY WAY GALAXY , 2008, Proceedings of the International Astronomical Union.

[82]  Early Evolution of Disk Galaxies: Formation of Bulges in Clumpy Young Galactic Disks , 1998, astro-ph/9806355.

[83]  B. Barbuy,et al.  Milky Way demographics with the VVV survey - I. The 84-million star colour–magnitude diagram of the Galactic bulge , 2012, 1208.5178.

[84]  J. Blommaert,et al.  Mira variables in the OGLE bulge fields , 2005, astro-ph/0506338.

[85]  M. Asplund,et al.  Non-LTE line formation of Fe in late-type stars - II. 1D spectroscopic stellar parameters , 2012, 1207.2454.

[86]  M. Schultheis,et al.  Infrared stellar populations in the central parts of the Milky Way galaxy , 2002, astro-ph/0210073.

[87]  M. Asplund,et al.  Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti , 2010, 1001.2521.

[88]  M. Martig,et al.  THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT , 2009, 0910.3677.

[89]  C. Babusiaux,et al.  The metallicity distribution of bulge clump giants in Baade’s window , 2011, 1107.5199.