Hidden Environmental Impact of COVID-19 Vaccination: Waste Management, Treatment, and Global Warming Potential

Latar belakang: Indonesia, negara terpadat keempat di dunia, muncul sebagai episentrum Covid-19 di Asia pada pertengahan tahun 2021. Lonjakan kasus COVID19 mendorong negara untuk menargetkan 1 juta vaksinasi Covid-19 per hari.Metode: Penelitian ini menggunakan data kualitatif dari tinjauan pustaka sebelumnya kemudian diolah menggunakan perhitungan yang sesuai dengan metode pengelolaan limbah vaksin.Hasil: Meskipun peluncuran vaksinasi besar-besaran, dampaknya terhadap lingkungan masih dipertanyakan. Tidak hanya pembuangan limbah medis yang tidak tepat tetap menjadi tantangan sejak wabah pandemi pada tahun 2020, tetapi vaksinasi memperburuk keadaan. Selain limbah padat, konsumsi listrik dan emisi polutan dari zat pendingin mungkin berkontribusi terhadap jejak karbon yang tinggi.Simpulan: Makalah ini menyoroti pentingnya pengelolaan limbah selama Covid-19 dan konsekuensi tak terduga pada penyimpanan dan penanganan vaksin untuk pengambilan keputusan peluncuran vaksinasi lebih lanjut. ABSTRACT Background: Indonesia, the world’s fourth most populous country, emerged as Asia's Covid-19 epicenters in the mid of 2021. The surge in COVID19 cases drives the nation to aim for 1 million Covid-19 vaccinations per day. Method: This study uses qualitatively and quantitatively data from previous literature reviews and then processed using calculations that are in accordance with the vaccine waste management method.Result: Despite massive vaccination rollout, the impact on the environment is still in question. Not only has improper medical waste disposal remained a challenge since the pandemic breakout in 2020, but the vaccination worsened the circumstances. In addition to solid waste, the electricity consumption and pollutant emissions of the refrigerants might contribute to a high carbon footprint. Conclusion: This paper highlights the importance of waste management during Covid-19 and unforeseen consequences on vaccine storage and handling for decision making of further vaccination rollouts.

[1]  I. W. Suryawan,et al.  Municipal infectious waste during COVID-19 pandemic: trends, impacts, and management , 2022, International Journal of Public Health Science (IJPHS).

[2]  Yongyue Gong,et al.  A review on emergency disposal and management of medical waste during the COVID-19 pandemic in China , 2021, Science of The Total Environment.

[3]  Asep Suryahadi,et al.  The Impact of Covid-19 and Social Protection Programs on Poverty in Indonesia , 2021, Bulletin of Indonesian Economic Studies.

[4]  S. Sutomo,et al.  Accelerating the Provision of Safe Water Supply in Urban and Rural Areas of Indonesia , 2021, Kesmas: National Public Health Journal.

[5]  Renova Glorya Montesori Siahaan,et al.  The Capacity of the Indonesian Healthcare System to Respond to COVID-19 , 2021, Frontiers in Public Health.

[6]  I. W. Suryawan,et al.  Evaluating Marine Debris Trends and the Potential of Incineration in the Context of the COVID-19 Pandemic in Southern Bali, Indonesia , 2021, Jurnal Ilmiah Perikanan dan Kelautan.

[7]  Heraldo J. L. de Souza,et al.  Refrigeration of COVID-19 Vaccines: Ideal Storage Characteristics, Energy Efficiency and Environmental Impacts of Various Vaccine Options , 2021, Energies.

[8]  Hwai Chyuan Ong,et al.  Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges , 2021, Environmental Pollution.

[9]  S. Nautiyal,et al.  Challenges and actions to the environmental management of Bio-Medical Waste during COVID-19 pandemic in India , 2021, Heliyon.

[10]  M. Fiore,et al.  Bidirectional association between COVID-19 and the environment: A systematic review , 2020, Environmental Research.

[11]  I. Nurhati,et al.  Unprecedented plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta Bay during COVID-19 pandemic , 2020, Chemosphere.

[12]  Arifin Arifin,et al.  The Design of Medical Waste Treatment in Public Health Center (MWT-P) for Reducing Total Bacteria Count in Banjarbaru , 2020 .

[13]  Sarawut Sangkham Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia , 2020, Case Studies in Chemical and Environmental Engineering.

[14]  Yin-M. Li,et al.  Removal of heavy metals in medical waste incineration fly ash by Na2EDTA combined with zero-valent iron and recycle of Na2EDTA: Acolumnar experiment study , 2020, Journal of the Air & Waste Management Association.

[15]  E. Voutsas,et al.  Chemical Stabilization of Fly Ash from Medical Waste Incinerators , 2020, Environmental Processes.

[16]  Sudarno,et al.  Medical waste management at community health center: a literature review , 2020 .

[17]  I. W. Suryawan,et al.  Bottom and fly ash treatment of medical waste incinerator from community health centres with solidification/stabilization , 2019, EXPLORING RESOURCES, PROCESS AND DESIGN FOR SUSTAINABLE URBAN DEVELOPMENT: Proceedings of the 5th International Conference on Engineering, Technology, and Industrial Application (ICETIA) 2018.

[18]  Shengji Luan,et al.  Application of multi-criteria-decision approach for the analysis of medical waste management systems in Myanmar , 2019, Journal of Cleaner Production.

[19]  Rui Zhang,et al.  Detoxification of medical waste incinerator fly ash through successive flotation , 2018, Separation Science and Technology.

[20]  A. Akyıldız,et al.  Compressive strength and heavy metal leaching of concrete containing medical waste incineration ash , 2017 .

[21]  O. Adedokun,et al.  Maximizing Agricultural Residues: Nutritional Properties of Straw Mushroom on Maize Husk, Waste Cotton and Plantain Leaves , 2013 .

[22]  Ari Darmawan Pasek,et al.  Feasibility of Recovering Energy from Municipal Solid Waste to Generate Electricity , 2013 .

[23]  Savvas A. Tassou,et al.  Analysis and simulation of continuous food frying processes , 2013 .