Biogenesis and cargo selectivity of autophagosomes.

Autophagy is a major catabolic pathway in eukaryotes, which is required for the lysosomal/vacuolar degradation of cytoplasmic proteins and organelles. Interest in the autophagy pathway has recently gained momentum largely owing to identification of multiple autophagy-related genes and recognition of its involvement in various physiological conditions. Here we review current knowledge of the molecular mechanisms regulating autophagy in mammals and yeast, specifically the biogenesis of autophagosomes and the selectivity of their cargo recruitment. We discuss the different steps of autophagy, from the signal transduction events that regulate it to the completion of this pathway by fusion with the lysosome/vacuole. We also review research on the origin of the autophagic membrane, the molecular mechanism of autophagosome formation, and the roles of two ubiquitin-like protein families and other structural elements that are essential for this process. Finally, we discuss the various modes of autophagy and highlight their functional relevance for selective degradation of specific cargos.

[1]  I. Harman-boehm,et al.  Altered autophagy in human adipose tissues in obesity. , 2010, The Journal of clinical endocrinology and metabolism.

[2]  B. Li,et al.  Omi/HtrA2 is a positive regulator of autophagy that facilitates the degradation of mutant proteins involved in neurodegenerative diseases , 2010, Cell Death and Differentiation.

[3]  C. Ahn,et al.  Suppression of NF-kappaB signaling by KEAP1 regulation of IKKbeta activity through autophagic degradation and inhibition of phosphorylation. , 2010, Cellular signalling.

[4]  D. Rubinsztein,et al.  Regulation of mammalian autophagy in physiology and pathophysiology. , 2010, Physiological reviews.

[5]  Daniel J. Klionsky,et al.  An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis , 2010, The Journal of cell biology.

[6]  Steve D. M. Brown,et al.  α-Synuclein impairs macroautophagy: implications for Parkinson’s disease , 2010, The Journal of cell biology.

[7]  Kay Hofmann,et al.  Selective autophagy: ubiquitin-mediated recognition and beyond , 2010, Nature Cell Biology.

[8]  C. Chu,et al.  Regulation of the autophagy protein LC3 by phosphorylation , 2010, The Journal of cell biology.

[9]  N. Mizushima,et al.  Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins , 2010, Autophagy.

[10]  Xu Zhang,et al.  Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation , 2010, Nature Cell Biology.

[11]  F. Inagaki,et al.  Selective Transport of α-Mannosidase by Autophagic Pathways , 2010, The Journal of Biological Chemistry.

[12]  Y. Ohsumi,et al.  Selective Transport of α-Mannosidase by Autophagic Pathways , 2010, The Journal of Biological Chemistry.

[13]  Hiroyuki Kumeta,et al.  Autophagy-related Protein 8 (Atg8) Family Interacting Motif in Atg3 Mediates the Atg3-Atg8 Interaction and Is Crucial for the Cytoplasm-to-Vacuole Targeting Pathway* , 2010, The Journal of Biological Chemistry.

[14]  Alain Van Dorsselaer,et al.  Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy , 2010, EMBO reports.

[15]  Wei-Guo Zhu,et al.  Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity , 2010, Nature Cell Biology.

[16]  A. van der Vaart,et al.  Exit from the Golgi Is Required for the Expansion of the Autophagosomal Phagophore in Yeast Saccharomyces cerevisiae , 2010, Molecular biology of the cell.

[17]  D. Klionsky,et al.  Post-Golgi Sec Proteins Are Required for Autophagy in Saccharomyces cerevisiae , 2010, Molecular biology of the cell.

[18]  Yuh-Ying Yeh,et al.  Autophosphorylation Within the Atg1 Activation Loop Is Required for Both Kinase Activity and the Induction of Autophagy in Saccharomyces cerevisiae , 2010, Genetics.

[19]  P. Sharpe,et al.  Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity , 2010, Proceedings of the National Academy of Sciences.

[20]  D. Rubinsztein,et al.  Plasma membrane contributes to the formation of pre-autophagosomal structures , 2010, Nature Cell Biology.

[21]  G. Dorn,et al.  Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming* , 2010, The Journal of Biological Chemistry.

[22]  A. Kimchi,et al.  DAP1, a Novel Substrate of mTOR, Negatively Regulates Autophagy , 2010, Current Biology.

[23]  Z. Elazar,et al.  LC3 and GATE‐16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis , 2010, The EMBO journal.

[24]  S. Pattingre,et al.  Starvation-induced Hyperacetylation of Tubulin Is Required for the Stimulation of Autophagy by Nutrient Deprivation* , 2010, The Journal of Biological Chemistry.

[25]  K. Lim,et al.  Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy , 2010, The Journal of cell biology.

[26]  D. Rigden,et al.  Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation , 2010, Autophagy.

[27]  Peter K. Kim,et al.  Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation , 2010, Cell.

[28]  L. Tsai,et al.  Negative regulation of Vps34 by Cdk mediated phosphorylation. , 2010, Molecular cell.

[29]  E. White,et al.  A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62 , 2010, Molecular and Cellular Biology.

[30]  Dimitri Krainc,et al.  The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. , 2010, Molecular cell.

[31]  S. Subramani,et al.  A yeast MAPK cascade regulates pexophagy but not other autophagy pathways , 2010, The Journal of cell biology.

[32]  D. Klionsky,et al.  Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy , 2010, Proceedings of the National Academy of Sciences.

[33]  Chang Hwa Jung,et al.  mTOR regulation of autophagy , 2010, FEBS letters.

[34]  Y. Ohsumi,et al.  Current knowledge of the pre‐autophagosomal structure (PAS) , 2010, FEBS letters.

[35]  S. Subramani,et al.  Molecular mechanism and physiological role of pexophagy , 2010, FEBS letters.

[36]  T. P. Neufeld,et al.  Autophagy takes flight in Drosophila , 2010, FEBS letters.

[37]  F. Inagaki,et al.  Atg8‐family interacting motif crucial for selective autophagy , 2010, FEBS letters.

[38]  D. Klionsky,et al.  The Cvt pathway as a model for selective autophagy , 2010, FEBS letters.

[39]  N. Ktistakis,et al.  Regulation of autophagy by phosphatidylinositol 3‐phosphate , 2010, FEBS letters.

[40]  T. Noda,et al.  Modulation of Local PtdIns3P Levels by the PI Phosphatase MTMR3 Regulates Constitutive Autophagy , 2010, Traffic.

[41]  G. Bjørkøy,et al.  p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy , 2010, Autophagy.

[42]  N. Mizushima,et al.  The role of the Atg1/ULK1 complex in autophagy regulation. , 2010, Current opinion in cell biology.

[43]  K. Shokat,et al.  Shaping Development of Autophagy Inhibitors with the Structure of the Lipid Kinase Vps34 , 2010, Science.

[44]  H. Virgin,et al.  Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. , 2010, Immunity.

[45]  P. Strålfors,et al.  Attenuated mTOR Signaling and Enhanced Autophagy in Adipocytes from Obese Patients with Type 2 Diabetes , 2010, Molecular medicine.

[46]  T. Noda,et al.  Combinational Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor Proteins VAMP8 and Vti1b Mediate Fusion of Antimicrobial and Canonical Autophagosomes with Lysosomes , 2010, Molecular biology of the cell.

[47]  Joo-Yong Lee,et al.  HDAC6 controls autophagosome maturation essential for ubiquitin‐selective quality‐control autophagy , 2010, The EMBO journal.

[48]  Mihee M. Kim,et al.  The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 , 2010, Nature Cell Biology.

[49]  D. Klionsky,et al.  Roles of the Lipid-binding Motifs of Atg18 and Atg21 in the Cytoplasm to Vacuole Targeting Pathway and Autophagy* , 2010, The Journal of Biological Chemistry.

[50]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[51]  G. Bjørkøy,et al.  FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end–directed vesicle transport , 2010, The Journal of cell biology.

[52]  Zhijian Li,et al.  The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy , 2010, The Journal of cell biology.

[53]  Jemma L. Webber,et al.  Coordinated regulation of autophagy by p38α MAPK through mAtg9 and p38IP , 2010, The EMBO journal.

[54]  Ivan Dikic,et al.  Nix is a selective autophagy receptor for mitochondrial clearance , 2010, EMBO reports.

[55]  N. Oshiro,et al.  Tor Directly Controls the Atg1 Kinase Complex To Regulate Autophagy , 2009, Molecular and Cellular Biology.

[56]  M. B. Mestre,et al.  TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. , 2009, Biochimica et biophysica acta.

[57]  T. Noda,et al.  A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation , 2009, Nature Cell Biology.

[58]  M. Komatsu,et al.  Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis , 2009, Proceedings of the National Academy of Sciences.

[59]  Eeva-Liisa Eskelinen,et al.  3D tomography reveals connections between the phagophore and endoplasmic reticulum , 2009, Autophagy.

[60]  D. Klionsky,et al.  A genomic screen for yeast mutants defective in selective mitochondria autophagy. , 2009, Molecular biology of the cell.

[61]  M. Czaja,et al.  Autophagy regulates adipose mass and differentiation in mice. , 2009, The Journal of clinical investigation.

[62]  Richard Wade-Martins,et al.  LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. , 2009, Human molecular genetics.

[63]  J. Gal,et al.  Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin‐independent mechanism , 2009, Journal of neurochemistry.

[64]  T. Lamark,et al.  The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway1 , 2009, The Journal of Immunology.

[65]  S. J. Deminoff,et al.  The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy , 2009, Proceedings of the National Academy of Sciences.

[66]  C. Sasakawa,et al.  Listeria monocytogenes ActA-mediated escape from autophagic recognition , 2009, Nature Cell Biology.

[67]  T. Natsume,et al.  Atg101, a novel mammalian autophagy protein interacting with Atg13 , 2009, Autophagy.

[68]  K. Otsu,et al.  Discovery of Atg5/Atg7-independent alternative macroautophagy , 2009, Nature.

[69]  Keiji Tanaka,et al.  The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. , 2009, Biochimica et biophysica acta.

[70]  S. Subramani,et al.  Peroxisome size provides insights into the function of autophagy-related proteins. , 2009, Molecular biology of the cell.

[71]  E. Chan,et al.  mTORC1 Phosphorylates the ULK1-mAtg13-FIP200 Autophagy Regulatory Complex , 2009, Science Signaling.

[72]  T. Proikas-Cezanne,et al.  Control of autophagy initiation by phosphoinositide 3‐phosphatase jumpy , 2009, The EMBO journal.

[73]  Y. Ohsumi,et al.  Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. , 2009, Developmental cell.

[74]  D. Klionsky,et al.  Atg32 is a mitochondrial protein that confers selectivity during mitophagy. , 2009, Developmental cell.

[75]  J. Lane,et al.  Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis , 2009, Journal of Cell Science.

[76]  P. Dennis,et al.  A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy , 2009, Autophagy.

[77]  Mathias Gautel,et al.  Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover , 2009, FEBS letters.

[78]  V. Deretic,et al.  Autophagy, immunity, and microbial adaptations. , 2009, Cell host & microbe.

[79]  Gyan Bhanot,et al.  Autophagy Suppresses Tumorigenesis through Elimination of p62 , 2009, Cell.

[80]  Hiroyuki Kumeta,et al.  The structure of Atg4B–LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy , 2009, The EMBO journal.

[81]  She Chen,et al.  ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy* , 2009, Journal of Biological Chemistry.

[82]  Keiji Tanaka,et al.  The MAP1-LC3 conjugation system is involved in lipid droplet formation. , 2009, Biochemical and biophysical research communications.

[83]  Y. Ohsumi,et al.  Atg17 recruits Atg9 to organize the pre‐autophagosomal structure , 2009, Genes to Cells.

[84]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[85]  C. Jung,et al.  ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. , 2009, Molecular biology of the cell.

[86]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[87]  Qing Jun Wang,et al.  Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex , 2009, Nature Cell Biology.

[88]  S. Akira,et al.  Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages , 2009, Nature Cell Biology.

[89]  In Hye Lee,et al.  Regulation of Autophagy by the p300 Acetyltransferase* , 2009, Journal of Biological Chemistry.

[90]  M. Donowitz,et al.  Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR-mediated intestinal anion secretion in mice. , 2009, The Journal of clinical investigation.

[91]  D. Rubinsztein,et al.  Autophagy Inhibition Compromises Degradation of Ubiquitin-Proteasome Pathway Substrates , 2009, Molecular cell.

[92]  M. Komatsu,et al.  A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. , 2009, Molecular cell.

[93]  F. Inagaki,et al.  ATG systems from the protein structural point of view. , 2009, Chemical reviews.

[94]  G. Boulianne,et al.  Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. , 2009, Developmental cell.

[95]  Y. Ohsumi,et al.  Lap3 is a selective target of autophagy in yeast, Saccharomyces cerevisiae. , 2009, Biochemical and biophysical research communications.

[96]  She Chen,et al.  Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase , 2008, Proceedings of the National Academy of Sciences.

[97]  F. Inagaki,et al.  Structural basis of target recognition by Atg8/LC3 during selective autophagy , 2008, Genes to cells : devoted to molecular & cellular mechanisms.

[98]  Jennifer Lippincott-Schwartz,et al.  Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes , 2008, Proceedings of the National Academy of Sciences.

[99]  N. Mizushima,et al.  Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. , 2008, Molecular biology of the cell.

[100]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[101]  T. Fujimura,et al.  The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. , 2008, Molecular biology of the cell.

[102]  Haiyan Wu,et al.  hVps15, but not Ca2+/CaM, is required for the activity and regulation of hVps34 in mammalian cells , 2008, The Biochemical journal.

[103]  S. Tooze,et al.  Kinase-Inactivated ULK Proteins Inhibit Autophagy via Their Conserved C-Terminal Domains Using an Atg13-Independent Mechanism , 2008, Molecular and Cellular Biology.

[104]  Y. Ohsumi,et al.  The Atg18-Atg2 Complex Is Recruited to Autophagic Membranes via Phosphatidylinositol 3-Phosphate and Exerts an Essential Function* , 2008, Journal of Biological Chemistry.

[105]  M. Thumm,et al.  Dissecting the localization and function of Atg18, Atg21 and Ygr223c , 2008, Autophagy.

[106]  Gareth Griffiths,et al.  Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum , 2008, The Journal of cell biology.

[107]  Z. Elazar,et al.  The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes , 2008, Journal of Cell Science.

[108]  T. Mizushima,et al.  Structural Basis for Sorting Mechanism of p62 in Selective Autophagy* , 2008, Journal of Biological Chemistry.

[109]  D. Klionsky,et al.  Atg8 controls phagophore expansion during autophagosome formation. , 2008, Molecular biology of the cell.

[110]  T. P. Neufeld,et al.  Regulation of TORC1 by Rag GTPases in nutrient response , 2008, Nature Cell Biology.

[111]  A. Yamamoto,et al.  Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. , 2008, Molecular biology of the cell.

[112]  S. Pattingre,et al.  JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. , 2008, Molecular cell.

[113]  Jae U. Jung,et al.  Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking , 2008, Nature Cell Biology.

[114]  David M. Sabatini,et al.  The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1 , 2008, Science.

[115]  D. Rubinsztein,et al.  Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease , 2008, Journal of Cell Science.

[116]  J. Guan,et al.  FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells , 2008, The Journal of cell biology.

[117]  T. Noda,et al.  The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. , 2008, Molecular biology of the cell.

[118]  Zhijian Li,et al.  Arp2 links autophagic machinery with the actin cytoskeleton. , 2008, Molecular biology of the cell.

[119]  Tomoatsu Hayashi,et al.  PX-RICS mediates ER-to-Golgi transport of the N-cadherin/beta-catenin complex. , 2008, Genes & development.

[120]  M. Sohrmann,et al.  Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease , 2008, Nature Cell Biology.

[121]  Antonia P. Sagona,et al.  Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain , 2008, The Journal of cell biology.

[122]  Ted M. Dawson,et al.  Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy , 2008 .

[123]  D. Rubinsztein,et al.  The Itinerary of Autophagosomes: From Peripheral Formation to Kiss-and-Run Fusion with Lysosomes , 2008, Traffic.

[124]  F. Inagaki,et al.  The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy* , 2007, Journal of Biological Chemistry.

[125]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[126]  D. Klionsky,et al.  The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. , 2007, Molecular biology of the cell.

[127]  C. Fader,et al.  Induction of Autophagy Promotes Fusion of Multivesicular Bodies with Autophagic Vacuoles in K562 Cells , 2007, Traffic.

[128]  A. Isaacs,et al.  Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease , 2007, The Journal of cell biology.

[129]  F. Wendler,et al.  ESCRTs and Fab1 Regulate Distinct Steps of Autophagy , 2007, Current Biology.

[130]  J. J. Mul,et al.  Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis , 2007, Nature Cell Biology.

[131]  S. Young,et al.  ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration , 2007, Current Biology.

[132]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[133]  Y. Ohsumi,et al.  Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion , 2007, Cell.

[134]  Peter Schwartz,et al.  Ambra1 regulates autophagy and development of the nervous system , 2007, Nature.

[135]  Nektarios Tavernarakis,et al.  Functional and physical interaction between Bcl‐XL and a BH3‐like domain in Beclin‐1 , 2007, The EMBO journal.

[136]  Z. Elazar,et al.  Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 , 2007, The EMBO journal.

[137]  D. Klionsky,et al.  A Cycling Protein Complex Required for Selective Autophagy , 2007, Autophagy.

[138]  Chiung-Ying Chang,et al.  Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. , 2007, Molecular biology of the cell.

[139]  Daniel J. Klionsky,et al.  Aup1p, a Yeast Mitochondrial Protein Phosphatase Homolog, Is Required for Efficient Stationary Phase Mitophagy and Cell Survival* , 2007, Journal of Biological Chemistry.

[140]  Y. Ohsumi,et al.  Hierarchy of Atg proteins in pre‐autophagosomal structure organization , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[141]  M. Diaz-Meco,et al.  Signal integration and diversification through the p62 scaffold protein. , 2007, Trends in biochemical sciences.

[142]  Z. Elazar,et al.  Identification of Essential Residues for the C-Terminal Cleavage of the Mammalian LC3: A Lesson from Yeast Atg8 , 2007, Autophagy.

[143]  D. Klionsky,et al.  Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast , 2006, The Journal of cell biology.

[144]  D. Klionsky,et al.  Atg27 is required for autophagy-dependent cycling of Atg9. , 2006, Molecular biology of the cell.

[145]  K. Hirschberg,et al.  Microtubules Support Production of Starvation-induced Autophagosomes but Not Their Targeting and Fusion with Lysosomes* , 2006, Journal of Biological Chemistry.

[146]  J. Lippincott-Schwartz,et al.  Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes , 2006, Journal of Cell Science.

[147]  M. Thumm,et al.  The relevance of the phosphatidylinositolphosphat‐binding motif FRRGT of Atg18 and Atg21 for the Cvt pathway and autophagy , 2006, FEBS letters.

[148]  F. Reggiori Membrane Origin for Autophagy , 2006, Current Topics in Developmental Biology.

[149]  D. Klionsky,et al.  Atg9 sorting from mitochondria is impaired in early secretion and VFT-complex mutants in Saccharomyces cerevisiae , 2006, Journal of Cell Science.

[150]  B. Oh,et al.  Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG , 2006, Nature Cell Biology.

[151]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[152]  Yasuyoshi Sakai,et al.  PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy , 2006, The Journal of cell biology.

[153]  G. Lustig,et al.  Two newly identified sites in the ubiquitin‐like protein Atg8 are essential for autophagy , 2006, EMBO reports.

[154]  Keiji Tanaka,et al.  Excess Peroxisomes Are Degraded by Autophagic Machinery in Mammals* , 2006, Journal of Biological Chemistry.

[155]  S. Tooze,et al.  Microtubules Facilitate Autophagosome Formation and Fusion of Autophagosomes with Endosomes , 2006, Traffic.

[156]  R. Kopito,et al.  HDAC6 and Microtubules Are Required for Autophagic Degradation of Aggregated Huntingtin* , 2005, Journal of Biological Chemistry.

[157]  G. Bjørkøy,et al.  p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005, The Journal of cell biology.

[158]  E. Eskelinen,et al.  Trs85 (Gsg1), a Component of the TRAPP Complexes, Is Required for the Organization of the Preautophagosomal Structure during Selective Autophagy via the Cvt Pathway* , 2005, Journal of Biological Chemistry.

[159]  Steve D. M. Brown,et al.  Dynein mutations impair autophagic clearance of aggregate-prone proteins , 2005, Nature Genetics.

[160]  D. Klionsky,et al.  Atg9 Cycles Between Mitochondria and the Pre-Autophagosomal Structure in Yeasts , 2005, Autophagy.

[161]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[162]  D. Klionsky,et al.  Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. , 2005, Autophagy.

[163]  S. Pattingre,et al.  The Evolutionarily Conserved Domain of Beclin 1 is Required for Vps34 Binding, Autophagy, and Tumor Suppressor Function , 2005, Autophagy.

[164]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[165]  Alfred Nordheim,et al.  WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy , 2004, Oncogene.

[166]  Y. Ohsumi,et al.  A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. , 2004, Molecular biology of the cell.

[167]  Takeshi Noda,et al.  In Vivo and in Vitro Reconstitution of Atg8 Conjugation Essential for Autophagy* , 2004, Journal of Biological Chemistry.

[168]  P. Saftig,et al.  Role for Rab7 in maturation of late autophagic vacuoles , 2004, Journal of Cell Science.

[169]  Stéphen Manon,et al.  Uth1p Is Involved in the Autophagic Degradation of Mitochondria* , 2004, Journal of Biological Chemistry.

[170]  Pietro Cortelli,et al.  Homozygous PINK1 C‐terminus mutation causing early‐onset parkinsonism , 2004, Annals of neurology.

[171]  Nobutaka Hattori,et al.  Novel PINK1 mutations in early‐onset parkinsonism , 2004, Annals of neurology.

[172]  T. Ueno,et al.  HsAtg4B/HsApg4B/Autophagin-1 Cleaves the Carboxyl Termini of Three Human Atg8 Homologues and Delipidates Microtubule-associated Protein Light Chain 3- and GABAA Receptor-associated Protein-Phospholipid Conjugates* , 2004, Journal of Biological Chemistry.

[173]  Harald Stenmark,et al.  Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes , 2004, Journal of Cell Science.

[174]  T. Ueno,et al.  LC3 conjugation system in mammalian autophagy , 2004, The International Journal of Biochemistry & Cell Biology.

[175]  M. Colombo,et al.  Rab7 is required for the normal progression of the autophagic pathway in mammalian cells , 2004, Journal of Cell Science.

[176]  A. Yamamoto,et al.  LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation , 2004, Journal of Cell Science.

[177]  D. Klionsky,et al.  Atg23 Is Essential for the Cytoplasm to Vacuole Targeting Pathway and Efficient Autophagy but Not Pexophagy* , 2003, Journal of Biological Chemistry.

[178]  Daniel J Klionsky,et al.  A unified nomenclature for yeast autophagy-related genes. , 2003, Developmental cell.

[179]  Takeshi Noda,et al.  Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain , 2003, The EMBO journal.

[180]  T. Natsume,et al.  Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate , 2003, Journal of Cell Science.

[181]  Z. Elazar,et al.  The COOH Terminus of GATE-16, an Intra-Golgi Transport Modulator, Is Cleaved by the Human Cysteine Protease HsApg4A* , 2003, The Journal of Biological Chemistry.

[182]  N. Mizushima,et al.  Formation of the ∼350-kDa Apg12-Apg5·Apg16 Multimeric Complex, Mediated by Apg16 Oligomerization, Is Essential for Autophagy in Yeast* , 2002, The Journal of Biological Chemistry.

[183]  K. Rajashankar,et al.  Structure of GABARAP in Two Conformations Implications for GABAA Receptor Localization and Tubulin Binding , 2002, Neuron.

[184]  A Kihara,et al.  Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. , 2001, Molecular biology of the cell.

[185]  K Suzuki,et al.  The pre‐autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation , 2001, The EMBO journal.

[186]  D. Klionsky,et al.  Apg2 Is a Novel Protein Required for the Cytoplasm to Vacuole Targeting, Autophagy, and Pexophagy Pathways* , 2001, The Journal of Biological Chemistry.

[187]  Y. Ohsumi,et al.  Ubiquitin and proteasomes: Molecular dissection of autophagy: two ubiquitin-like systems , 2001, Nature Reviews Molecular Cell Biology.

[188]  Takeshi Tokuhisa,et al.  Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells , 2001, The Journal of cell biology.

[189]  Takeshi Noda,et al.  Two Distinct Vps34 Phosphatidylinositol 3–Kinase Complexes Function in Autophagy and Carboxypeptidase Y Sorting inSaccharomyces cerevisiae , 2001, The Journal of cell biology.

[190]  D. Klionsky,et al.  Dissection of Autophagosome Biogenesis into Distinct Nucleation and Expansion Steps , 2000, The Journal of cell biology.

[191]  D. Fass,et al.  Structure of GATE-16, Membrane Transport Modulator and Mammalian Ortholog of Autophagocytosis Factor Aut7p* , 2000, The Journal of Biological Chemistry.

[192]  A. Porat,et al.  GATE‐16, a membrane transport modulator, interacts with NSF and the Golgi v‐SNARE GOS‐28 , 2000, The EMBO journal.

[193]  H. Hibshoosh,et al.  Induction of autophagy and inhibition of tumorigenesis by beclin 1 , 1999, Nature.

[194]  D. Klionsky,et al.  Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. , 1999, Journal of cell science.

[195]  Takeshi Noda,et al.  Formation Process of Autophagosome Is Traced with Apg8/Aut7p in Yeast , 1999, The Journal of cell biology.

[196]  M. Zerial,et al.  Phosphatidylinositol-3-OH kinases are Rab5 effectors , 1999, Nature Cell Biology.

[197]  D. Klionsky,et al.  Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. , 1999, Molecular biology of the cell.

[198]  James E. Goldman,et al.  Protection against Fatal Sindbis Virus Encephalitis by Beclin, a Novel Bcl-2-Interacting Protein , 1998, Journal of Virology.

[199]  P. Seglen,et al.  Purification and characterization of autophagosomes from rat hepatocytes. , 1998, The Biochemical journal.

[200]  P. Seglen,et al.  Isolation and Characterization of Rat Liver Amphisomes , 1998, The Journal of Biological Chemistry.

[201]  S. Emr,et al.  A Multispecificity Syntaxin Homologue, Vam3p, Essential for Autophagic and Biosynthetic Protein Transport to the Vacuole , 1997, The Journal of cell biology.

[202]  A. Matsuura,et al.  Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. , 1997, Gene.

[203]  A. Matsuura,et al.  Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. , 1997, Gene.

[204]  P. Seglen,et al.  Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. , 1995, Experimental cell research.

[205]  D. Klionsky,et al.  Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway , 1995, The Journal of cell biology.

[206]  A. Meijer,et al.  Phosphorylation of Ribosomal Protein S6 Is Inhibitory for Autophagy in Isolated Rat Hepatocytes (*) , 1995, The Journal of Biological Chemistry.

[207]  M. Schlumpberger,et al.  Isolation of autophagocytosis mutants of Saccharomyces cerevisiae , 1994, FEBS letters.

[208]  Y. Ohsumi,et al.  Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae , 1993, FEBS letters.

[209]  B. Welch The structure , 1992 .

[210]  P. Seglen,et al.  Non-selective autophagy. , 1990, Seminars in cell biology.

[211]  K. Howell,et al.  In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome , 1990, The Journal of cell biology.

[212]  P. Seglen,et al.  Prelysosomal convergence of autophagic and endocytic pathways. , 1988, Biochemical and biophysical research communications.

[213]  P. Seglen,et al.  3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[214]  C. Schworer,et al.  Induction of autophagy by amino-acid deprivation in perfused rat liver , 1977, Nature.

[215]  R. Deter,et al.  INFLUENCE OF GLUCAGON, AN INDUCER OF CELLULAR AUTOPHAGY, ON SOME PHYSICAL PROPERTIES OF RAT LIVER LYSOSOMES , 1967, The Journal of cell biology.

[216]  A. Novikoff,et al.  CYTOLYSOMES AND MITOCHONDRIAL DEGENERATION , 1962, The Journal of cell biology.

[217]  K. Porter,et al.  CYTOPLASMIC COMPONENTS IN HEPATIC CELL LYSOSOMES , 1962, The Journal of cell biology.

[218]  A. Novikoff,et al.  The Proximal Tubule Cell in Experimental Hydronephrosis , 1959, The Journal of biophysical and biochemical cytology.

[219]  S. L. Clark CELLULAR DIFFERENTIATION IN THE KIDNEYS OF NEWBORN MICE STUDIED WITH THE ELECTRON MICROSCOPE , 1957, The Journal of biophysical and biochemical cytology.

[220]  Z. Elazar,et al.  Regulation of autophagy by ROS: physiology and pathology. , 2011, Trends in biochemical sciences.

[221]  H. Virgin,et al.  Role of autophagy and autophagy genes in inflammatory bowel disease. , 2009, Current topics in microbiology and immunology.

[222]  T. Noda,et al.  Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. , 2008, Cell structure and function.

[223]  D. Klionsky,et al.  The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. , 2004, Developmental cell.

[224]  A. Meijer,et al.  The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. , 1997, European journal of biochemistry.

[225]  U. Pfeifer Inhibition by insulin of the physiological autophagic breakdown of cell organelles. , 1977, Acta biologica et medica Germanica.

[226]  C. Duve,et al.  Functions of lysosomes. , 1966, Annual review of physiology.