A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings

[1]  F. Wendling,et al.  Towards a mesoscale physical modeling framework for stereotactic-EEG recordings , 2022, bioRxiv.

[2]  J. García-Ojalvo,et al.  Comparison between an exact and a heuristic neural mass model with second-order synapses , 2022, bioRxiv.

[3]  F. Wendling,et al.  A personalizable autonomous neural mass model of epileptic seizures , 2021, bioRxiv.

[4]  Rick A Adams,et al.  Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia , 2021, Biological Psychiatry.

[5]  Andreas Daffertshofer,et al.  On the Validity of Neural Mass Models , 2021, Frontiers in Computational Neuroscience.

[6]  A. Thiele,et al.  Stimulus dependence of directed information exchange between cortical layers in macaque V1 , 2020, bioRxiv.

[7]  Emiliano Santarnecchi,et al.  EEG spectral power abnormalities and their relationship with cognitive dysfunction in patients with Alzheimer's disease and type 2 diabetes , 2019, Neurobiology of Aging.

[8]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[9]  Fabrice Wendling,et al.  COALIA: A Computational Model of Human EEG for Consciousness Research , 2019, bioRxiv.

[10]  Stefan Everling,et al.  Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad , 2019, The Journal of Neuroscience.

[11]  Gustavo Deco,et al.  Personalization of hybrid brain models from neuroimaging and electrophysiology data , 2018, bioRxiv.

[12]  Holly Rossiter,et al.  Lamina-specific cortical dynamics in human visual and sensorimotor cortices , 2018, eLife.

[13]  Earl K. Miller,et al.  Working Memory 2.0 , 2018, Neuron.

[14]  Xiao-Jing Wang,et al.  Engagement of Pulvino-cortical Feedforward and Feedback Pathways in Cognitive Computations , 2018, Neuron.

[15]  Bradley Voytek,et al.  Cycle-by-cycle analysis of neural oscillations , 2018, bioRxiv.

[16]  Daniel Soudry,et al.  Bifurcation analysis of two coupled Jansen-Rit neural mass models , 2018, PloS one.

[17]  Gaute T. Einevoll,et al.  Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0 , 2018, bioRxiv.

[18]  Sarah Feldt Muldoon,et al.  Personalized brain network models for assessing structure–function relationships , 2018, Current Opinion in Neurobiology.

[19]  Earl K. Miller,et al.  Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory , 2018, Proceedings of the National Academy of Sciences.

[20]  O. Sporns,et al.  Network neuroscience , 2017, Nature Neuroscience.

[21]  Karl J. Friston,et al.  Linking canonical microcircuits and neuronal activity: Dynamic causal modelling of laminar recordings , 2017, NeuroImage.

[22]  Wim Fias,et al.  Brain networks under attack: robustness properties and the impact of lesions. , 2016, Brain : a journal of neurology.

[23]  L. Mucke,et al.  Network abnormalities and interneuron dysfunction in Alzheimer disease , 2016, Nature Reviews Neuroscience.

[24]  Viktor K. Jirsa,et al.  Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study , 2016, NeuroImage.

[25]  Xiao-Jing Wang,et al.  Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex , 2016, Science Advances.

[26]  Roberto C. Sotero,et al.  Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column , 2016, bioRxiv.

[27]  Sarah Feldt Muldoon,et al.  Stimulation-Based Control of Dynamic Brain Networks , 2016, PLoS Comput. Biol..

[28]  C. Schroeder,et al.  Laminar Profile and Physiology of the α Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex , 2015, The Journal of Neuroscience.

[29]  Ernest Montbri'o,et al.  Macroscopic description for networks of spiking neurons , 2015, 1506.06581.

[30]  J. Schall,et al.  Microcircuitry of agranular frontal cortex: contrasting laminar connectivity between occipital and frontal areas. , 2015, Journal of neurophysiology.

[31]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[32]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[33]  G. Woodman,et al.  Microcircuitry of Agranular Frontal Cortex: Testing the Generality of the Canonical Cortical Microcircuit , 2014, The Journal of Neuroscience.

[34]  S. Jones,et al.  Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network , 2013, Front. Hum. Neurosci..

[35]  Nikola T. Markov,et al.  Cortical High-Density Counterstream Architectures , 2013, Science.

[36]  Giulio Ruffini,et al.  The electric field in the cortex during transcranial current stimulation , 2013, NeuroImage.

[37]  F. Wendling,et al.  From Oscillatory Transcranial Current Stimulation to Scalp EEG Changes: A Biophysical and Physiological Modeling Study , 2013, PloS one.

[38]  Adam Kohn,et al.  Laminar dependence of neuronal correlations in visual cortex. , 2013, Journal of neurophysiology.

[39]  D. Leopold,et al.  Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex , 2012, Current Biology.

[40]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[41]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[42]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[43]  M. Goodfellow Spatio-temporal Modelling and Analysis of Epileptiform EEG , 2011 .

[44]  Pierre Mégevand,et al.  Functional Development of Large-Scale Sensorimotor Cortical Networks in the Brain , 2011, The Journal of Neuroscience.

[45]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[46]  C. Schroeder,et al.  Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations , 2011, The Journal of Neuroscience.

[47]  Gaute T. Einevoll,et al.  Inverse Current Source Density Method in Two Dimensions: Inferring Neural Activation from Multielectrode Recordings , 2011, Neuroinformatics.

[48]  Amir Shmuel,et al.  Anatomically-constrained effective connectivity among layers in a cortical column modeled and estimated from local field potentials. , 2010, Journal of integrative neuroscience.

[49]  P. Benquet,et al.  Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From ‘altered structure’ to ‘dysfunction’ , 2010, NeuroImage.

[50]  Ying Zheng,et al.  A Dynamic Causal Model of the Coupling Between Pulse Stimulation and Neural Activity , 2009, Neural Computation.

[51]  P. Lefèbvre,et al.  Dynamic Labour Supply Effects of Childcare Subsidies: Evidence from a Canadian Natural Experiment on Low-Fee Universal Child Care , 2009 .

[52]  Anders M. Dale,et al.  Estimation of Thalamocortical and Intracortical Network Models from Joint Thalamic Single-Electrode and Cortical Laminar-Electrode Recordings in the Rat Barrel System , 2009, PLoS Comput. Biol..

[53]  S. Epstein,et al.  Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model , 2008, Proceedings of the National Academy of Sciences.

[54]  C. Schroeder,et al.  Neuronal Mechanisms of Cortical Alpha Oscillations in Awake-Behaving Macaques , 2008, The Journal of Neuroscience.

[55]  A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs , 2008, Front. Comput. Neurosci..

[56]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[57]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[58]  A. Draguhn,et al.  Cellular and Network Mechanisms Underlying Spontaneous Sharp Wave–Ripple Complexes in Mouse Hippocampal Slices , 2003, The Journal of physiology.

[59]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[61]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[62]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[63]  Cessac Bruno,et al.  A constructive mean-field analysis of multi population neural networks with random synaptic weights , 2009 .

[64]  Olivier Faugeras,et al.  Analysis of Jansen's model of a single cortical column , 2006 .

[65]  Ben H. Jansen,et al.  A neurophysiologically-based mathematical model of flash visual evoked potentials , 2004, Biological Cybernetics.

[66]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[67]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm , 1982 .

[68]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm. , 1982, Bulletin of mathematical biology.

[69]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[70]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .