The Membrane Shell Model in Nonlinear Elasticity

Summary. We consider a shell-like three-dimensional nonlinearly hyperelastic body and we let its thickness go to zero. We show, under appropriate hypotheses on the applied loads, that the deformations that minimize the total energy weakly converge in a Sobolev space toward deformations that minimize a nonlinear shell membrane energy. The nonlinear shell membrane energy is obtained by computing the r -limit of the sequence of three-dimensional energies.

[1]  J. C. Simo,et al.  A new energy and momentum conserving algorithm for the non‐linear dynamics of shells , 1994 .

[2]  A. Karwowski Dynamical models for plates and membranes. An asymptotic approach , 1993 .

[3]  J. C. Simo,et al.  A justification of nonlinear properly invariant plate theories , 1993 .

[4]  J. C. Simo,et al.  A drill rotation formulation for geometrically exact shells , 1992 .

[5]  G. Buttazzo,et al.  A variational definition of the strain energy for an elastic string , 1991 .

[6]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[7]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[8]  P. G. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[9]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[10]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[11]  Paolo Marcellini,et al.  Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals , 1985 .

[12]  Nicola Fusco,et al.  Semicontinuity problems in the calculus of variations , 1984 .

[13]  Bernard Dacorogna,et al.  Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .

[14]  J. C. Currie,et al.  Weak continuity and variational problems of arbitrary order , 1981 .

[15]  Philippe G. Ciarlet,et al.  A justification of the von Kármán equations , 1980 .

[16]  Stuart S. Antman,et al.  Ordinary differential equations of non-linear elasticity I: Foundations of the theories of non-linearly elastic rods and shells , 1976 .

[17]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[18]  P. M. Naghdi,et al.  On the Derivation of Shell Theories by Direct Approach , 1974 .

[19]  C. C. Wang,et al.  Introduction to Rational Elasticity , 1973 .

[20]  K. O. Friedrichs,et al.  A boundary-layer theory for elastic plates , 1961 .

[21]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[22]  M. Carrive Modélisation intrinsèque et analyse numérique d'un problème de coque mince en grands deplacements , 1995 .

[23]  A. Raoult,et al.  The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity , 1995 .

[24]  S. Antman Nonlinear problems of elasticity , 1994 .

[25]  P. G. Ciarlet,et al.  ANALYSE ASYMPTOTIQUE DES COQUES LINEAIREMENT ELASTIQUES. II: COQUES EN FLEXION , 1994 .

[26]  J. C. Simo,et al.  A Geometrically-exact rod model incorporating shear and torsion-warping deformation , 1991 .

[27]  Philippe G. Ciarlet,et al.  Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis , 1991 .

[28]  S. Muêller Det = det. A remark on the distributional determinant , 1990 .

[29]  E. Sanchez-Palencia,et al.  Passage à la limite de l'élasticité tridimensionnelle à la théorie asymptotique des coques minces , 1990 .

[30]  E. Sanchez-Palencia,et al.  Statique et dynamique des coques minces. II: Cas de flexion pure inhibée. Approximation membranaire , 1989 .

[31]  A. Raoult Analyse mathematique de quelques modeles de plaques et de poutres elastiques ou elasto-plastiques , 1988 .

[32]  A. Raoult Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material , 1986 .

[33]  Philippe G. Ciarlet,et al.  A Justi cation of a Nolinear Model in Plate Theory , 1979 .

[34]  M. J. Sewell On configuration-dependent loading , 1967 .

[35]  A. L. Gol'denveizer Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity , 1963 .

[36]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[37]  Clifford Ambrose Truesdell,et al.  Exact theory of stress and strain in rods and shells , 1957 .