The Membrane Shell Model in Nonlinear Elasticity
暂无分享,去创建一个
[1] J. C. Simo,et al. A new energy and momentum conserving algorithm for the non‐linear dynamics of shells , 1994 .
[2] A. Karwowski. Dynamical models for plates and membranes. An asymptotic approach , 1993 .
[3] J. C. Simo,et al. A justification of nonlinear properly invariant plate theories , 1993 .
[4] J. C. Simo,et al. A drill rotation formulation for geometrically exact shells , 1992 .
[5] G. Buttazzo,et al. A variational definition of the strain energy for an elastic string , 1991 .
[6] J. C. Simo,et al. On a stress resultant geometrically exact shell model , 1990 .
[7] J. C. Simo,et al. On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .
[8] P. G. Ciarlet,et al. Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .
[9] J. C. Simo,et al. On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .
[10] J. C. Simo,et al. On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .
[11] Paolo Marcellini,et al. Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals , 1985 .
[12] Nicola Fusco,et al. Semicontinuity problems in the calculus of variations , 1984 .
[13] Bernard Dacorogna,et al. Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .
[14] J. C. Currie,et al. Weak continuity and variational problems of arbitrary order , 1981 .
[15] Philippe G. Ciarlet,et al. A justification of the von Kármán equations , 1980 .
[16] Stuart S. Antman,et al. Ordinary differential equations of non-linear elasticity I: Foundations of the theories of non-linearly elastic rods and shells , 1976 .
[17] J. Ball. Convexity conditions and existence theorems in nonlinear elasticity , 1976 .
[18] P. M. Naghdi,et al. On the Derivation of Shell Theories by Direct Approach , 1974 .
[19] C. C. Wang,et al. Introduction to Rational Elasticity , 1973 .
[20] K. O. Friedrichs,et al. A boundary-layer theory for elastic plates , 1961 .
[21] Charles B. Morrey,et al. QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .
[22] M. Carrive. Modélisation intrinsèque et analyse numérique d'un problème de coque mince en grands deplacements , 1995 .
[23] A. Raoult,et al. The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity , 1995 .
[24] S. Antman. Nonlinear problems of elasticity , 1994 .
[25] P. G. Ciarlet,et al. ANALYSE ASYMPTOTIQUE DES COQUES LINEAIREMENT ELASTIQUES. II: COQUES EN FLEXION , 1994 .
[26] J. C. Simo,et al. A Geometrically-exact rod model incorporating shear and torsion-warping deformation , 1991 .
[27] Philippe G. Ciarlet,et al. Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis , 1991 .
[28] S. Muêller. Det = det. A remark on the distributional determinant , 1990 .
[29] E. Sanchez-Palencia,et al. Passage à la limite de l'élasticité tridimensionnelle à la théorie asymptotique des coques minces , 1990 .
[30] E. Sanchez-Palencia,et al. Statique et dynamique des coques minces. II: Cas de flexion pure inhibée. Approximation membranaire , 1989 .
[31] A. Raoult. Analyse mathematique de quelques modeles de plaques et de poutres elastiques ou elasto-plastiques , 1988 .
[32] A. Raoult. Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material , 1986 .
[33] Philippe G. Ciarlet,et al. A Justi cation of a Nolinear Model in Plate Theory , 1979 .
[34] M. J. Sewell. On configuration-dependent loading , 1967 .
[35] A. L. Gol'denveizer. Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity , 1963 .
[36] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[37] Clifford Ambrose Truesdell,et al. Exact theory of stress and strain in rods and shells , 1957 .