Compressive Sensing

Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as l1-minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overview on both theoretical and numerical aspects of compressive sensing.

[1]  J. Kuelbs Probability on Banach spaces , 1978 .

[2]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[3]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[4]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[5]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[6]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[7]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[9]  Holger Rauhut,et al.  Compressive estimation of doubly selective channels: exploiting channel sparsity to improve spectral efficiency in multicarrier transmissions , 2009, ArXiv.

[10]  Carola-Bibiane Schönlieb,et al.  A convergent overlapping domain decomposition method for total variation minimization , 2009, Numerische Mathematik.

[11]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[12]  Holger Rauhut,et al.  Circulant and Toeplitz matrices in compressed sensing , 2009, ArXiv.

[13]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[14]  Erich Novak,et al.  Optimal Recovery and n-Widths for Convex Classes of Functions , 1995 .

[15]  Massimo Fornasier,et al.  Restoration of Color Images by Vector Valued BV Functions and Variational Calculus , 2007, SIAM J. Appl. Math..

[16]  David L. Donoho,et al.  High-Dimensional Centrally Symmetric Polytopes with Neighborliness Proportional to Dimension , 2006, Discret. Comput. Geom..

[17]  Thomas Strohmer,et al.  Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..

[18]  E. Gluskin NORMS OF RANDOM MATRICES AND WIDTHS OF FINITE-DIMENSIONAL SETS , 1984 .

[19]  G. Lorentz,et al.  Constructive approximation : advanced problems , 1996 .

[20]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[21]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[22]  Sören Bartels,et al.  Numerical Methods for Nonlinear Partial Differential Equations , 2015 .

[23]  S. Foucart A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .

[24]  David P. Woodruff,et al.  Lower bounds for sparse recovery , 2010, SODA '10.

[25]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[26]  Jan Vybíral,et al.  Widths of embeddings in function spaces , 2008, J. Complex..

[27]  R. Vershynin,et al.  One sketch for all: fast algorithms for compressed sensing , 2007, STOC '07.

[28]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[29]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[30]  P. Schmieder,et al.  Application of nonlinear sampling schemes to COSY-type spectra , 1993, Journal of biomolecular NMR.

[31]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[32]  B. Logan,et al.  Signal recovery and the large sieve , 1992 .

[33]  Andrej Yu. Garnaev,et al.  On widths of the Euclidean Ball , 1984 .

[34]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[35]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[36]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[37]  B. S. Kašin,et al.  DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS , 1977 .

[38]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[39]  E.J. Candes Compressive Sampling , 2022 .

[40]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[41]  Jared Tanner,et al.  Phase Transitions for Greedy Sparse Approximation Algorithms , 2010, ArXiv.

[42]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[43]  M. Talagrand Selecting a proportion of characters , 1998 .

[44]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[45]  Piotr Indyk,et al.  Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[46]  A. Sterrett On the Detection of Defective Members of Large Populations , 1957 .

[47]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[48]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[49]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[50]  D. Donoho,et al.  Neighborliness of randomly projected simplices in high dimensions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Massimo Fornasier,et al.  Numerical Methods for Sparse Recovery , 2010 .

[52]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[53]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[54]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[55]  Rolf Schneider,et al.  Random projections of regular simplices , 1992, Discret. Comput. Geom..

[56]  Holger Rauhut,et al.  Sparsity in Time-Frequency Representations , 2007, ArXiv.

[57]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[58]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[59]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[60]  S. Mendelson,et al.  Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.

[61]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[62]  Pierre Vandergheynst,et al.  Dictionary Preconditioning for Greedy Algorithms , 2008, IEEE Transactions on Signal Processing.

[63]  Holger Rauhut,et al.  The Gelfand widths of ℓp-balls for 0 , 2010, ArXiv.

[64]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[65]  Jean-Luc Starck,et al.  Compressed Sensing in Astronomy , 2008, IEEE Journal of Selected Topics in Signal Processing.

[66]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[67]  Avi Wigderson,et al.  Randomness conductors and constant-degree lossless expanders , 2002, STOC '02.

[68]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[69]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[70]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[71]  Holger Rauhut Stability Results for Random Sampling of Sparse Trigonometric Polynomials , 2008, IEEE Transactions on Information Theory.

[72]  S. Muthukrishnan,et al.  Approximation of functions over redundant dictionaries using coherence , 2003, SODA '03.

[73]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[74]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[75]  H. Rauhut Random Sampling of Sparse Trigonometric Polynomials , 2005, math/0512642.

[76]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[77]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[78]  Graham Cormode,et al.  Combinatorial Algorithms for Compressed Sensing , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[79]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[80]  M. R. Osborne,et al.  On the LASSO and its Dual , 2000 .

[81]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[82]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[83]  Massimo Fornasier,et al.  The application of joint sparsity and total variation minimization algorithms to a real-life art restoration problem , 2009, Adv. Comput. Math..

[84]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[85]  Holger Rauhut,et al.  The Gelfand widths of lp-balls for 0p<=1 , 2010, J. Complex..

[86]  Thomas Strohmer,et al.  Compressed sensing radar , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[87]  Holger Rauhut,et al.  Edinburgh Research Explorer Identification of Matrices Having a Sparse Representation , 2022 .

[88]  A. K. Cline Rate of Convergence of Lawson's Algorithm , 1972 .

[89]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[90]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .