The influence of a hydroxypropyl-beta-cyclodextrin composite on the gelation of kappa-carrageenan

[1]  Yanli Wang,et al.  Influence of cyclodextrins on the gel properties of kappa-carrageenan. , 2018, Food chemistry.

[2]  Han-Qing Chen,et al.  Evaluation studies on the combined effect of hydrothermal treatment and octenyl succinylation on the physic-chemical, structural and digestibility characteristics of sweet potato starch. , 2018, Food chemistry.

[3]  P. Liu,et al.  Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films. , 2018, Ultrasonics sonochemistry.

[4]  S. Lecomte,et al.  Interfacial activity and emulsifying behaviour of inclusion complexes between helical polysaccharides and flavouring molecules resulting from non-covalent interactions. , 2018, Food research international.

[5]  J. Nečas,et al.  Carrageenan: a review. , 2018 .

[6]  Bo Cui,et al.  The relationship between entanglement concentration and physicochemical properties of potato and sweet potato starch dispersions , 2018 .

[7]  P. Singh,et al.  A combined molecular dynamics simulation, atoms in molecule analysis and IR study on the biologically important bulk fluorinated ethanols to understand the role of weak interactions in their cluster formation and hydrogen bond network , 2017 .

[8]  T. Uyar,et al.  Antioxidant Vitamin E/Cyclodextrin Inclusion Complex Electrospun Nanofibers: Enhanced Water Solubility, Prolonged Shelf Life, and Photostability of Vitamin E. , 2017, Journal of agricultural and food chemistry.

[9]  Zhengyu Jin,et al.  Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel. , 2016, Food chemistry.

[10]  Ning Li,et al.  Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. , 2016, Food chemistry.

[11]  N. Matubayasi,et al.  Gelation of carrageenan: Effects of sugars and polyols , 2016 .

[12]  H. Abbaspour,et al.  Effects of κ-carrageenan on rheological properties of dually modified sago starch: Towards finding gelatin alternative for hard capsules. , 2015, Carbohydrate polymers.

[13]  S. Fourmentin,et al.  Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. , 2015, Carbohydrate polymers.

[14]  Ö. Pekcan,et al.  Elasticity Study of PAAm-κ C Composite Prepared in Various κ C Content and Measured at Several Temperatures , 2015 .

[15]  S. Kasapis,et al.  Release mechanism of omega-3 fatty acid in κ-carrageenan/polydextrose undergoing glass transition. , 2015, Carbohydrate polymers.

[16]  M. Saltmarsh Recent trends in the use of food additives in the United Kingdom. , 2015, Journal of the science of food and agriculture.

[17]  Himanshu K. Solanki,et al.  Carrageenan: a natural seaweed polysaccharide and its applications. , 2014, Carbohydrate polymers.

[18]  T. Taylor,et al.  Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications , 2013 .

[19]  U. Shivhare,et al.  Rheological, textural and spectral characteristics of sorbitol substituted mango jam , 2011 .

[20]  H. Mahajan,et al.  Nasal in situ gel containing hydroxy propyl β-cyclodextrin inclusion complex of artemether: development and in vitro evaluation , 2011 .

[21]  Javier M. Gonzalez,et al.  FORMULATION AND CHARACTERIZATION OF INCLUSION COMPLEXES USING HYDROXYPROPYL-β-CYCLODEXTRIN AND FLORFENICOL WITH CHITOSAN MICROPARTICLES , 2011 .

[22]  S. Zorrilla,et al.  Study of milk/κ-carrageenan mixtures by atomic force microscopy , 2010 .

[23]  H. Marques A review on cyclodextrin encapsulation of essential oils and volatiles , 2010 .

[24]  S. Young,et al.  Texture and rheological characterization of kappa and iota carrageenan in the presence of counter ions , 2010 .

[25]  B. Elizalde,et al.  Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability , 2010 .

[26]  Ö. Pekcan,et al.  Critical Exponents of Kappa Carrageenan in the Coil-Helix and Helix-Coil Hysteresis Loops , 2009 .

[27]  Daniel Fábio Kawano,et al.  Carrageenans: biological properties, chemical modifications and structural analysis - a review. , 2009 .

[28]  C. Loret,et al.  Mechanical properties of κ-carrageenan in high concentration of sugar solutions , 2009 .

[29]  J. Harrington,et al.  Conformational ordering and gelation of gelatin in mixtures with soluble polysaccharides , 2009 .

[30]  J. Marcy,et al.  Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin. , 2009, Journal of agricultural and food chemistry.

[31]  M. Rinaudo,et al.  Main properties and current applications of some polysaccharides as biomaterials , 2008 .

[32]  Alberto Tecante,et al.  Rheological and calorimetric study of the sol–gel transition of κ-carrageenan , 2007 .

[33]  Johnathan E. Holladay,et al.  Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis , 2007 .

[34]  T. Hatakeyama,et al.  Effect of thermal history on kappa-carrageenan hydrogelation by differential scanning calorimetry , 2007 .

[35]  I. Mourtzinos,et al.  Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin , 2007 .

[36]  M. Šen,et al.  Radiation synthesis of poly(N-vinyl-2-pyrrolidone)-kappa-carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests. , 2005, Journal of biomedical materials research. Part A.

[37]  F. V. D. Velde,et al.  The structure of κ/ι-hybrid carrageenans II. Coil–helix transition as a function of chain composition , 2005 .

[38]  K. Draget,et al.  Physical behaviour of fish gelatin-κ-carrageenan mixtures , 2004 .

[39]  L. Szente,et al.  Cyclodextrins as food ingredients , 2004 .

[40]  D. Dunstan,et al.  The rheology of K+-κ-carrageenan as a weak gel , 2002 .

[41]  H. Pinheiro,et al.  Carrageenan: A Food-Grade and Biocompatible Support for Immobilisation Techniques , 2002 .

[42]  F. V. D. Velde,et al.  1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry , 2002 .

[43]  P. Linko,et al.  FLAVOR ENCAPSULATION AND RELEASE CHARACTERISTICS OF SPRAY-DRIED POWDER BY THE BLENDED ENCAPSULANT OF CYCLODEXTRIN AND GUM ARABIC , 2001 .

[44]  L. Piculell,et al.  On the mechanism of gelation of helix-forming biopolymers , 1994 .

[45]  K. Kohyama,et al.  Effects of Sugars on the Gel-Sol Transition of Agarose and k -Carrageenan , 1994 .

[46]  K. Gekko,et al.  Effect of pressure on the sol-gel transition of carrageenans , 1985 .

[47]  C. Rochas,et al.  Mechanism of gel formation in κ‐carrageenan , 1984 .

[48]  T. Arakawa,et al.  Stabilization of protein structure by sugars. , 1982, Biochemistry.