Statistical and operational performance assessment of multitemporal SAR image filtering

Multitemporal synthetic aperture radar (SAR) image filtering is a useful preprocessing step for many applications that require speckle reduction. Several multitemporal filters are now available with very different characteristics. In this paper, the performance of three multitemporal filters is assessed with respect to statistical and operational criteria. Statistical criteria include measures of bias, noise reduction, and preservation of both spatial and temporal information. Operational criteria evaluate the accuracy of manual detection of geographical features such as points, lines, and surfaces. This study was carried out with the help of ten photointerpreters. It uses a set of seven multitemporal SAR images from the European Remote Sensing 1 (ERS-1) satellite. It provides guidelines to select multitemporal filters according to the application and the subsequent processing.

[1]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[2]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Jong-Sen Lee,et al.  Digital image smoothing and the sigma filter , 1983, Comput. Vis. Graph. Image Process..

[5]  H H Arsenault,et al.  Combined homomorphic and local-statistics processing for restoration of images degraded by signal-dependent noise. , 1984, Applied optics.

[6]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  P. Yan,et al.  3 - An algorithm for filtering multiplicative noise in wide range , 1986 .

[8]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[9]  A. Hillion,et al.  A new non-linear filtering algorithm with application to radar images , 1988, Proceedings of the 1988 IEEE National Radar Conference.

[10]  A. Lopes,et al.  A statistical and geometrical edge detector for SAR images , 1988 .

[11]  Jan P. Allebach,et al.  Combating Speckle In SAR Images: Vector Filtering And Sequential Classification Based On A Multiplicative Noise Model , 1990 .

[12]  Jong-Sen Lee,et al.  Speckle reduction in multipolarization, multifrequency SAR imagery , 1991, IEEE Trans. Geosci. Remote. Sens..

[13]  Henri Maitre,et al.  Smoothing speckled synthetic aperture radar images by using maximum homgeneous region filters , 1992 .

[14]  Jong-Sen Lee,et al.  Unsupervised estimation of speckle noise in radar images , 1992, Int. J. Imaging Syst. Technol..

[15]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[16]  Jerome Bruniquel,et al.  Analysis and enhancement of multitemporal SAR data , 1994, Remote Sensing.

[17]  Patrick Wambacq,et al.  Speckle filtering of synthetic aperture radar images : a review , 1994 .

[18]  J. Bruniquel,et al.  Multi-variate optimal speckle reduction in SAR imagery , 1997 .

[19]  Dan Johan Weydahl,et al.  Analysis of glaciers and geomorphology on Svalbard using multitemporal ERS-1 SAR images , 1998, IEEE Trans. Geosci. Remote. Sens..

[20]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[21]  Danielle Ducrot,et al.  Capabilities of ERS sensors for Mediterranean vegetation detection using multitemporal data , 2000, SPIE Remote Sensing.

[22]  N. Classeau,et al.  Time-space filtering of multitemporal SAR images , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[23]  Thuy Le Toan,et al.  Multitemporal ERS SAR analysis applied to forest mapping , 2000, IEEE Trans. Geosci. Remote. Sens..

[24]  Helmut Rott,et al.  Retrieval of wet snow by means of multitemporal SAR data , 2000, IEEE Trans. Geosci. Remote. Sens..

[25]  J. Rudant,et al.  Geographic Data Base Enriching from ERS SAR Scenes: Examples in French Guiana , 2000 .

[26]  F. Tupin,et al.  Smoothing speckled SAR images by using maximum homogeneous region filters: an improved approach , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[27]  P Bolon,et al.  Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images. , 2001, Applied optics.

[28]  Ph. Bolon,et al.  Bias correction and speckle reduction in time-space filtering of multi-temporal SAR images , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[29]  P. Lombardo,et al.  Maximum likelihood approach to the detection of changes between multitemporal SAR images , 2001 .

[30]  Shaun Quegan,et al.  Filtering of multichannel SAR images , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  Pierfrancesco Lombardo,et al.  Maximum likelihood signal processing techniques to detect a step pattern of change in multitemporal SAR images , 2002, IEEE Trans. Geosci. Remote. Sens..