Biological rhythms as temporal dissipative structures

I. IntroductionII. Dissipative Structures in Time and SpaceIII. Glycolytic OscillationsIV. Calcium OscillationsV. Pulsatile Intercellular Communication in DictyosteliumA. Oscillations of cAMPB. Link with Pulsatile Hormone SecretionVI. Circadian RhythmsA. Circadian Rhythms in DrosophilaB. The Mammalian Circadian ClockC. Link with Disorders of the Sleep–Wake CycleD. Long-Term Suppression of Circadian Rhythms by a Single Light PulseE. Stochastic Versus Deterministic Models for Circadian RhythmsVII. The Cell-Cycle ClockVIII. Newly Discovered Cellular RhythmsA. Oscillations of p53 and NF-KBB. Segmentation ClockC. Nucleocytoplasmic Oscillations of the Transcription Factor Msn2 in YeastIX. Complex Oscillatory BehaviorX. Concluding RemarksAcknowledgmentsReferencesSpecial Volume in Memory of Ilya Prigogine: Advances in Chemical Physics, Volume 135,edited by Stuart A. RiceCopyright # 2007 John Wiley & Sons, Inc.

[1]  John Jeremy Rice,et al.  A plausible model for the digital response of p53 to DNA damage. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  O. Petersen,et al.  Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+-induced Ca2+ release , 1990, Cell.

[3]  E Bornberg-Bauer,et al.  Switching from simple to complex oscillations in calcium signaling. , 2000, Biophysical journal.

[4]  A Goldbeter,et al.  Dissipative structures for an allosteric model. Application to glycolytic oscillations. , 1972, Biophysical journal.

[5]  P. Ruoff,et al.  The Goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa. , 2001, Journal of theoretical biology.

[6]  J. Keizer,et al.  A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[7]  P. De Koninck,et al.  Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. , 1998, Science.

[8]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[9]  Elizabeth A. Vitalis,et al.  Role of the cAMP signaling pathway in the regulation of gonadotropin-releasing hormone secretion in GT1 cells. , 2000 .

[10]  S. Swillens,et al.  From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Leibler,et al.  Biological rhythms: Circadian clocks limited by noise , 2000, Nature.

[12]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[13]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[14]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[15]  M. Laub,et al.  A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. , 1998, Molecular biology of the cell.

[16]  Richard Stone,et al.  A Simple Model , 1951 .

[17]  Daniel B. Forger,et al.  Stochastic simulation of the mammalian circadian clock. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[19]  Albert Goldbeter,et al.  Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae , 2003, The Journal of cell biology.

[20]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[21]  B. Schoener,et al.  CONTROLOF THE WAVEFORM OFOSCILLATIONS OF THE REDUCED PYRIDINENUCLEOTIDELEVEL IN A CELL-FREEEXTRACT , 1964 .

[22]  A. Goldbeter Computational approaches to cellular rhythms , 2002, Nature.

[23]  Tony M. Plant,et al.  Hypophysial Responses to Continuous and Intermittent Delivery of Hypothalamic Gonadotropin-Releasing Hormone , 1979 .

[24]  A. Goldbeter A model for circadian oscillations in the Drosophila period protein (PER) , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  T. Plant,et al.  Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone , 1978 .

[26]  Reinhart Heinrich,et al.  Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. , 2000, Biophysical journal.

[27]  D. Murray,et al.  A genomewide oscillation in transcription gates DNA replication and cell cycle. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Sorensen,et al.  Chaos in Glycolysis , 1997, Journal of theoretical biology.

[29]  J. Higgins,et al.  A CHEMICAL MECHANISM FOR OSCILLATION OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Lars Folke Olsen,et al.  Biochemical oscillations and cellular rhythms: The molecular bases of periodic and chaotic behaviour: Albert Goldbeter. Cambridge University Press, Cambridge, 1996. $99.95 (cloth), 605 + xxiv pp , 1997 .

[31]  Daniel B. Forger,et al.  A detailed predictive model of the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  William F. Loomis,et al.  Periodic Signaling Controlled by an Oscillatory Circuit That Includes Protein Kinases ERK2 and PKA , 2004, Science.

[33]  A Goldbeter,et al.  Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1,4,5-trisphosphate signal in a model for intracellular Ca2+ oscillations , 1999, Bulletin of mathematical biology.

[34]  A Goldbeter,et al.  A Model Based on Receptor Desensitization for Cyclic AMP Signaling in Dictyostelium Cells. , 1987, Biophysical journal.

[35]  S. Caplan,et al.  Genesis of the ultradian rhythm of GH secretion: a new model unifying experimental observations in rats. , 1998, American journal of physiology. Endocrinology and metabolism.

[36]  D B Kell,et al.  Oscillations in NF-kappaB signaling control the dynamics of gene expression. , 2004, Science.

[37]  Hans V Westerhoff,et al.  Control analysis for autonomously oscillating biochemical networks. , 2002, Biophysical journal.

[38]  Olivier Pourquié,et al.  fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo , 2004, Nature.

[39]  L. Olsen,et al.  Chaos in biological systems. , 1985 .

[40]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[41]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[42]  Alexander E. Kel,et al.  Bifurcation analysis of the regulatory modules of the mammalian G1/S transition , 2004, Bioinform..

[43]  Olivier Pourquié,et al.  FGF Signaling Controls Somite Boundary Position and Regulates Segmentation Clock Control of Spatiotemporal Hox Gene Activation , 2001, Cell.

[44]  S. Kay,et al.  Time zones: a comparative genetics of circadian clocks , 2001, Nature Reviews Genetics.

[45]  R. Larter,et al.  Chaos in intracellular Ca2+ oscillations in a new model for non-excitable cells. , 1995, Cell calcium.

[46]  P. Hardin,et al.  Interlocked feedback loops within the Drosophila circadian oscillator. , 1999, Science.

[47]  N. Berman,et al.  Oscillations of lactate released from islets of Langerhans: evidence for oscillatory glycolysis in beta-cells. , 1992, The American journal of physiology.

[48]  P. Hardin,et al.  The Circadian Timekeeping System of Drosophila , 2005, Current Biology.

[49]  A. Goldbeter,et al.  Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness. , 1989, Biophysical journal.

[50]  James P. Keener,et al.  Mathematical physiology , 1998 .

[51]  L. Tsimring,et al.  Positive genetic feedback governs cAMP spiral wave formation in Dictyostelium. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Paolo Sassone-Corsi,et al.  A Web of Circadian Pacemakers , 2002, Cell.

[53]  Andrew W. Murray,et al.  Cyclin synthesis drives the early embryonic cell cycle , 1989, Nature.

[54]  H. Kitano,et al.  Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm. , 2001, Journal of theoretical biology.

[55]  Andrea Ciliberto,et al.  Steady States and Oscillations in the p53/Mdm2 Network , 2005, Cell cycle.

[56]  S. Schuster,et al.  Modelling of simple and complex calcium oscillations , 2002 .

[57]  T. Kondo,et al.  Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro , 2005, Science.

[58]  M. Berridge Elementary and global aspects of calcium signalling. , 1997, Journal of Physiology.

[59]  N. Spitzer,et al.  Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes , 2002, Nature.

[60]  A. Goldbeter,et al.  Modeling the dynamics of human hair cycles by a follicular automaton. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[61]  C J Weijer,et al.  cAMP receptor affinity controls wave dynamics, geometry and morphogenesis in Dictyostelium. , 2001, Journal of cell science.

[62]  Julian Lewis Autoinhibition with Transcriptional Delay A Simple Mechanism for the Zebrafish Somitogenesis Oscillator , 2003, Current Biology.

[63]  L. Stryer,et al.  Molecular model for receptor-stimulated calcium spiking. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Mary-Lee Dequéant,et al.  Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock , 2003, Nature.

[65]  Sune Danø,et al.  On the mechanisms of glycolytic oscillations in yeast , 2005, The FEBS journal.

[66]  S. Golden,et al.  Resonating circadian clocks enhance fitness in cyanobacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[67]  D. A. Baxter,et al.  Modeling Circadian Oscillations with Interlocking Positive and Negative Feedback Loops , 2001, The Journal of Neuroscience.

[68]  J. Tyson,et al.  Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. , 1993, Journal of cell science.

[69]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926, Nature.

[70]  T. Sejnowski,et al.  Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. , 2003, Physiological reviews.

[71]  K. Tornheim Are Metabolic Oscillations Responsible for Normal Oscillatory Insulin Secretion? , 1997, Diabetes.

[72]  Ryoichiro Kageyama,et al.  Oscillations, clocks and segmentation. , 2003, Current opinion in genetics & development.

[73]  H V Westerhoff,et al.  Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. , 1996, European journal of biochemistry.

[74]  A. Winfree The geometry of biological time , 1991 .

[75]  Joan V. Robinson,et al.  A Simple Model , 1969 .

[76]  A. Goldbeter,et al.  Robustness of circadian rhythms with respect to molecular noise , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[77]  A. Huxley ION MOVEMENTS DURING NERVE ACTIVITY , 1959, Annals of the New York Academy of Sciences.

[78]  N. Monk Oscillatory Expression of Hes1, p53, and NF-κB Driven by Transcriptional Time Delays , 2003, Current Biology.

[79]  M Claret,et al.  Mechanism of receptor‐oriented intercellular calcium wave propagation in hepatocytes , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[80]  J. Sneyd,et al.  A model for the propagation of intercellular calcium waves. , 1994, The American journal of physiology.

[81]  A Goldbeter,et al.  Properties of intracellular Ca2+ waves generated by a model based on Ca(2+)-induced Ca2+ release. , 1994, Biophysical journal.

[82]  Katherine C. Chen,et al.  Integrative analysis of cell cycle control in budding yeast. , 2004, Molecular biology of the cell.

[83]  E. Knobil Patterns of hormonal signals and hormone action. , 1981, The New England journal of medicine.

[84]  Christopher R. Jones,et al.  An hPer2 Phosphorylation Site Mutation in Familial Advanced Sleep Phase Syndrome , 2001, Science.

[85]  O. Pourquié,et al.  A molecular clock involved in somite segmentation. , 2001, Current topics in developmental biology.

[86]  Richard Bertram,et al.  Complex bursting in pancreatic islets: a potential glycolytic mechanism. , 2004, Journal of theoretical biology.

[87]  Yasufumi Shigeyoshi,et al.  An Abrupt Shift in the Day/Night Cycle Causes Desynchrony in the Mammalian Circadian Center , 2003, The Journal of Neuroscience.

[88]  James E. Ferrell,et al.  Systems-Level Dissection of the Cell-Cycle Oscillator: Bypassing Positive Feedback Produces Damped Oscillations , 2005, Cell.

[89]  Tullio Pozzan,et al.  Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness , 2005, Nature Cell Biology.

[90]  A. Murray,et al.  The Cell Cycle: An Introduction , 1993 .

[91]  Jeffrey C. Hall,et al.  Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels , 1990, Nature.

[92]  W. J. Freeman,et al.  Alan Turing: The Chemical Basis of Morphogenesis , 1986 .

[93]  A Goldbeter,et al.  A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Tyson,et al.  Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. , 2001, Journal of theoretical biology.

[95]  O. Pourquié The Segmentation Clock: Converting Embryonic Time into Spatial Pattern , 2003, Science.

[96]  S. Leibler,et al.  Mechanisms of noise-resistance in genetic oscillators , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Denis Duboule,et al.  Time for Chronomics? , 2003, Science.

[98]  B. Hess,et al.  Oscillatory phenomena in biochemistry. , 1971, Annual review of biochemistry.

[99]  B. Ehrlich,et al.  Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[100]  J. Dunlap Molecular Bases for Circadian Clocks , 1999, Cell.

[101]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[102]  Albert Goldbeter,et al.  Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[103]  K. Storey,et al.  Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[104]  A. Goldbeter,et al.  Toward a detailed computational model for the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[105]  B. Hess,et al.  METABOLIC CONTROL MECHANISMS. VII.A DETAILED COMPUTER MODEL OF THE GLYCOLYTIC PATHWAY IN ASCITES CELLS. , 1964, The Journal of biological chemistry.

[106]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[107]  A Goldbeter,et al.  Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[108]  G. Dupont,et al.  Modelling the effect of specific inositol 1,4,5‐trisphosphate receptor isoforms on cellular Ca2+ signals , 2006, Biology of the cell.

[109]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[110]  K Kume,et al.  Interacting molecular loops in the mammalian circadian clock. , 2000, Science.

[111]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[112]  I. Prigogine,et al.  On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium , 1967 .

[113]  Ryoichiro Kageyama,et al.  Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[114]  A. Murray,et al.  Dominoes and clocks: the union of two views of the cell cycle. , 1989, Science.

[115]  D DiFrancesco,et al.  Pacemaker mechanisms in cardiac tissue. , 1993, Annual review of physiology.

[116]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[117]  P. Boyle,et al.  Pathophysiology and Treatment , 2000 .

[118]  Paolo Sassone-Corsi,et al.  Circadian Regulator CLOCK Is a Histone Acetyltransferase , 2006, Cell.

[119]  A Goldbeter,et al.  Oscillatory enzymes. , 1976, Annual review of biophysics and bioengineering.

[120]  A. J. Lotka UNDAMPED OSCILLATIONS DERIVED FROM THE LAW OF MASS ACTION. , 1920 .

[121]  J. Tyson Some further studies of nonlinear oscillations in chemical systems , 1973 .

[122]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[123]  D. Noble Modeling the Heart--from Genes to Cells to the Whole Organ , 2002, Science.

[124]  Heike Brand,et al.  Estrogen Receptor-α Directs Ordered, Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter , 2003, Cell.

[125]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[126]  A. Goldbeter,et al.  Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[127]  P. Hardin,et al.  Circadian rhythms from multiple oscillators: lessons from diverse organisms , 2005, Nature Reviews Genetics.

[128]  G. Richardson,et al.  Circadian rhythm sleep disorders: pathophysiology and treatment. , 1996, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[129]  René Lefever,et al.  The Brusselator: It does Oscillate all the same , 1988 .

[130]  H. Hirata,et al.  Oscillatory Expression of the bHLH Factor Hes1 Regulated by a Negative Feedback Loop , 2002, Science.

[131]  Richard Bertram,et al.  Intra- and inter-islet synchronization of metabolically driven insulin secretion. , 2005, Biophysical journal.

[132]  Moh’d A. Al-Nimr,et al.  A THEORETICAL AND EXPERIMENTAL STUDY , 1996 .

[133]  S. Reppert,et al.  Coordination of circadian timing in mammals , 2002, Nature.

[134]  M. Mackey,et al.  Dynamical Diseases , 1987, Annals of the New York Academy of Sciences.

[135]  A Goldbeter,et al.  Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[136]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Biological Systems , 1969, Nature.

[137]  I. Yamazaki,et al.  Sustained Oscillations in a Lactoperoxidase, NADPH and O2 System , 1969, Nature.

[138]  R. M. Noyes,et al.  Oscillatory Chemical Reactions , 1974 .

[139]  B. Hess,et al.  Continuous oscillations in a cell-free extract of S. carlsbergensis. , 1966, Biochemical and biophysical research communications.

[140]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[141]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[142]  A. Fabiato,et al.  Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. , 1983, The American journal of physiology.

[143]  K. Tsaneva-Atanasova,et al.  A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[144]  A Goldbeter,et al.  Control of developmental transitions in the cyclic AMP signalling system of Dictyostelium discoideum. , 1980, Differentiation; research in biological diversity.

[145]  John J. Tyson,et al.  Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[147]  A. Goldbeter,et al.  From simple to complex oscillatory behavior in metabolic and genetic control networks. , 2001, Chaos.

[148]  E. C. Zeeman,et al.  A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. , 1976, Journal of theoretical biology.

[149]  O. Pourquié,et al.  Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis , 1997, Cell.

[150]  F. Hynne,et al.  Full-scale model of glycolysis in Saccharomyces cerevisiae. , 2001, Biophysical chemistry.

[151]  E. Cox,et al.  Origin and evolution of circular waves and spirals in Dictyostelium discoideum territories. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[152]  A. Goldbeter,et al.  A Model for Circadian Rhythms in Drosophila Incorporating the Formation of a Complex between the PER and TIM Proteins , 1998, Journal of biological rhythms.

[153]  A. Goldbeter,et al.  Frequency encoding of pulsatile signals of cAMP based on receptor desensitization in Dictyostelium cells. , 1990, Journal of theoretical biology.

[154]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[155]  Richard E. Kronauer,et al.  Quantifying Human Circadian Pacemaker Response to Brief, Extended, and Repeated Light Stimuli over the Phototopic Range , 1999, Journal of biological rhythms.

[156]  F. Siegert,et al.  Three-dimensional scroll waves of cAMP could direct cell movement and gene expression in Dictyostelium slugs. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[157]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[158]  H. Petty,et al.  Neutrophil oscillations , 2001, Immunologic research.

[159]  A Goldbeter,et al.  Desynchronization of cells on the developmental path triggers the formation of spiral waves of cAMP during Dictyostelium aggregation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[160]  松尾 拓哉 Control mechanism of the circadian clock for timing of cell division in vivo , 2004 .

[161]  P. Hindmarsh,et al.  Frequency of administration of growth hormone--an important factor in determining growth response to exogenous growth hormone. , 1990, Hormone research.

[162]  John J Tyson,et al.  A model for restriction point control of the mammalian cell cycle. , 2004, Journal of theoretical biology.

[163]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[164]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[165]  Geneviève Dupont,et al.  Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model. , 2003, Cell calcium.

[166]  Yuichi Inoue,et al.  Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome , 2001, EMBO reports.

[167]  Christian Wehrle,et al.  Wnt3a plays a major role in the segmentation clock controlling somitogenesis. , 2003, Developmental cell.

[168]  M. Elowitz,et al.  Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[169]  U Alon,et al.  Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[170]  Christopher R. Jones,et al.  Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans , 1999, Nature Medicine.

[171]  Satoshi Sawai,et al.  An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations , 2005, Nature.

[172]  H G Othmer,et al.  Excitation, oscillations and wave propagation in a G-protein-based model of signal transduction in Dictyostelium discoideum. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[173]  A Goldbeter,et al.  A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[174]  M. W. Young An ultradian clock shapes genome expression in yeast. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[175]  Sune Danø,et al.  Sustained oscillations in living cells , 1999, Nature.

[176]  Albert Goldbeter,et al.  Entrainment Versus Chaos in a Model for a Circadian Oscillator Driven by Light-Dark Cycles , 2000 .

[177]  Julian Lewis,et al.  The vertebrate segmentation clock. , 2004, Current opinion in genetics & development.

[178]  Albert Goldbeter,et al.  A model for the enhancement of fitness in cyanobacteria based on resonance of a circadian oscillator with the external light-dark cycle. , 2002, Journal of theoretical biology.

[179]  J. Ross,et al.  Oscillations and control features in glycolysis: numerical analysis of a comprehensive model. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[180]  Ying Xu,et al.  Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome , 2005, Nature.

[181]  N. Spitzer,et al.  Coding of neuronal differentiation by calcium transients , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[182]  J. Tyson,et al.  Mathematical model of the cell division cycle of fission yeast. , 2001, Chaos.

[183]  E. Sel'kov,et al.  Self-oscillations in glycolysis. 1. A simple kinetic model. , 1968, European journal of biochemistry.

[184]  Mechanisms and Biological Significance of Pulsatile Hormone Secretion , 2000 .

[185]  Andre Levchenko,et al.  Comment on "Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression" , 2005, Science.