Layer-Specific Input to Distinct Cell Types in Layer 6 of Monkey Primary Visual Cortex

Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Cα receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cβ receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Cα or 4Cβ. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing.

[1]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[3]  E. Callaway,et al.  Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  E. Callaway,et al.  Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex , 1996, Visual Neuroscience.

[5]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[6]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[7]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[8]  E. Callaway,et al.  Ocular dominance columns and local projections of layer 6 pyramidal neurons in macaque primary visual cortex , 1997, Visual Neuroscience.

[9]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[10]  E. Callaway,et al.  Functional Streams and Local Connections of Layer 4C Neurons in Primary Visual Cortex of the Macaque Monkey , 1998, The Journal of Neuroscience.

[11]  E. Callaway,et al.  Photostimulation using caged glutamate reveals functional circuitry in living brain slices. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Fitzpatrick,et al.  The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex , 1994, Visual Neuroscience.

[13]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[15]  J. B. Levitt,et al.  Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections , 1994, Visual Neuroscience.

[16]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[17]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  Edward M Callaway,et al.  Diversity and Cell Type Specificity of Local Excitatory Connections to Neurons in Layer 3B of Monkey Primary Visual Cortex , 2000, Neuron.

[19]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[20]  Lawrence C. Katz,et al.  Scanning laser photostimulation: a new approach for analyzing brain circuits , 1994, Journal of Neuroscience Methods.

[21]  Vivien A. Casagrande,et al.  Parallel pathways inmacaque monkeystriate cortex: Anatomically defined columns inlayer III , 1992 .

[22]  E. Callaway,et al.  Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1 , 1998, Visual Neuroscience.

[23]  M. Hawken,et al.  Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  E. Callaway,et al.  Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex , 1996, Nature.

[25]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.