Mining structures for semantics

Online data is available in two avors: unstructured data that resides as free text in HTML pages, and structured data that resides in databases and knowledge bases. Unstructured data is easily accessed as human-readable text on a browser, while structured data is hidden behind web query interfaces (web forms), web services, and custom database APIs. Access to this data, popularly referred to as the hidden web, entails submitting correctly completed web forms or writing code to access web services using protocols such as SOAP.

[1]  Jeannette M. Wing,et al.  Specification matching of software components , 1995, TSEM.

[2]  Amihai Motro,et al.  Database Schema Matching Using Machine Learning with Feature Selection , 2002, CAiSE.

[3]  Jeannette M. Wing,et al.  Specification matching of software components , 1997 .

[4]  Mark A. Musen,et al.  PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment , 2000, AAAI/IAAI.

[5]  Antonio Pumariño,et al.  The binding point , 1997 .

[6]  Ian H. Witten,et al.  Issues in Stacked Generalization , 2011, J. Artif. Intell. Res..

[7]  Wei-Ying Ma,et al.  Instance-based Schema Matching for Web Databases by Domain-specific Query Probing , 2004, VLDB.

[8]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[9]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[10]  Pedro M. Domingos,et al.  Learning to map between ontologies on the semantic web , 2002, WWW '02.

[11]  Jeffrey F. Naughton,et al.  On schema matching with opaque column names and data values , 2003, SIGMOD '03.

[12]  Pedro M. Domingos,et al.  Reconciling schemas of disparate data sources: a machine-learning approach , 2001, SIGMOD '01.

[13]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[14]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[15]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[16]  Kevin Chen-Chuan Chang,et al.  Statistical schema matching across web query interfaces , 2003, SIGMOD '03.

[17]  Gerard Salton,et al.  The SMART Retrieval System , 1971 .

[18]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[19]  AnHai Doan,et al.  Corpus-based schema matching , 2005, 21st International Conference on Data Engineering (ICDE'05).

[20]  Clement T. Yu,et al.  An interactive clustering-based approach to integrating source query interfaces on the deep Web , 2004, SIGMOD '04.

[21]  David W. Embley,et al.  Discovering direct and indirect matches for schema elements , 2003, Eighth International Conference on Database Systems for Advanced Applications, 2003. (DASFAA 2003). Proceedings..

[22]  Erhard Rahm,et al.  COMA - A System for Flexible Combination of Schema Matching Approaches , 2002, VLDB.

[23]  Jun Zhang,et al.  Simlarity Search for Web Services , 2004, VLDB.