One Tree to Link Them All: A Phylogenetic Dataset for the European Tetrapoda

Since the ever-increasing availability of phylogenetic informative data, the last decade has seen an upsurge of ecological studies incorporating information on evolutionary relationships among species. However, detailed species-level phylogenies are still lacking for many large groups and regions, which are necessary for comprehensive large-scale eco-phylogenetic analyses. Here, we provide a dataset of 100 dated phylogenetic trees for all European tetrapods based on a mixture of supermatrix and supertree approaches. Phylogenetic inference was performed separately for each of the main Tetrapoda groups of Europe except mammals (i.e. amphibians, birds, squamates and turtles) by means of maximum likelihood (ML) analyses of supermatrix applying a tree constraint at the family (amphibians and squamates) or order (birds and turtles) levels based on consensus knowledge. For each group, we inferred 100 ML trees to be able to provide a phylogenetic dataset that accounts for phylogenetic uncertainty, and assessed node support with bootstrap analyses. Each tree was dated using penalized-likelihood and fossil calibration. The trees obtained were well-supported by existing knowledge and previous phylogenetic studies. For mammals, we modified the most complete supertree dataset available on the literature to include a recent update of the Carnivora clade. As a final step, we merged the phylogenetic trees of all groups to obtain a set of 100 phylogenetic trees for all European Tetrapoda species for which data was available (91%). We provide this phylogenetic dataset (100 chronograms) for the purpose of comparative analyses, macro-ecological or community ecology studies aiming to incorporate phylogenetic information while accounting for phylogenetic uncertainty.

[1]  J. Brosius,et al.  Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes) , 2007, BMC Evolutionary Biology.

[2]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[3]  S. Evans At the feet of the dinosaurs: the early history and radiation of lizards , 2003, Biological reviews of the Cambridge Philosophical Society.

[4]  S. Hedges,et al.  The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. , 2005, Comptes rendus biologies.

[5]  Katrin Nyakatura,et al.  Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates , 2012, BMC Biology.

[6]  M. Donoghue,et al.  Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches , 2009, BMC Evolutionary Biology.

[7]  Susanne A. Fritz,et al.  Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. , 2009, Ecology letters.

[8]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[9]  A. Peterson,et al.  Evolutionary history of woodpeckers and allies (Aves: Picidae): placing key taxa on the phylogenetic tree. , 2006, Molecular phylogenetics and evolution.

[10]  P. Crochet,et al.  Phylogenetic relationships within the Laridae (Charadriiformes: Aves) inferred from mitochondrial markers. , 2005, Molecular phylogenetics and evolution.

[11]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[12]  Wilfried Thuiller,et al.  Are species' responses to global change predicted by past niche evolution? , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  Johansson,et al.  Clades within the 'higher land birds', evaluated by nuclear DNA sequences , 2001 .

[14]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[15]  Tyler S. Kuhn,et al.  A simple polytomy resolver for dated phylogenies , 2011 .

[16]  Joel Dudley,et al.  TimeTree: a public knowledge-base of divergence times among organisms , 2006, Bioinform..

[17]  N. Mouquet,et al.  Biodiversity and Climate Change: Integrating Evolutionary and Ecological Responses of Species and Communities , 2010 .

[18]  J. Wiens,et al.  WHY DOES A TRAIT EVOLVE MULTIPLE TIMES WITHIN A CLADE? REPEATED EVOLUTION OF SNAKELIKE BODY FORM IN SQUAMATE REPTILES , 2006, Evolution; international journal of organic evolution.

[19]  D. Mindell,et al.  Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages , 2008, BMC Biology.

[20]  Wilfried Thuiller,et al.  Consequences of climate change on the tree of life in Europe , 2011, Nature.

[21]  P. Houde,et al.  Phylogeny of "core Gruiformes" (Aves: Grues) and resolution of the Limpkin-Sungrebe problem. , 2007, Molecular phylogenetics and evolution.

[22]  P. E. Olscn Triassic Vertebrates of Gondwanan Aspect from the Richmond Basin of Virginia , 2022 .

[23]  T. Paton,et al.  Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the Charadriiform birds congruent with the nuclear RAG-1 tree. , 2006, Molecular phylogenetics and evolution.

[24]  Philip C. J. Donoghue,et al.  Calibrating and constraining molecular clocks , 2009 .

[25]  M. Wink,et al.  Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae , 2009 .

[26]  R. J. Gutiérrez,et al.  A classification of the grouse (Aves: Tetraoninae) based on mitochondrial DNA sequences , 2000, Wildlife Biology.

[27]  T. Paton,et al.  RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds. , 2003, Molecular phylogenetics and evolution.

[28]  Alexandros Stamatakis,et al.  Exploring New Search Algorithms and Hardware for Phylogenetics: RAxML Meets the IBM Cell , 2007, J. VLSI Signal Process..

[29]  Erik L. L. Sonnhammer,et al.  Kalign – an accurate and fast multiple sequence alignment algorithm , 2005, BMC Bioinformatics.

[30]  F. Lei,et al.  Phylogeny and Classification of the Old World Emberizini (aves, Passeriformes) , 2008 .

[31]  C. Corti,et al.  Phylogenetic relationships of Sardinian cave salamanders, genus Hydromantes, based on mitochondrial and nuclear DNA sequence data. , 2009, Molecular phylogenetics and evolution.

[32]  J. Wiens,et al.  Crest evolution in newts: implications for reconstruction methods, sexual selection, phenotypic plasticity and the origin of novelties , 2011, Journal of evolutionary biology.

[33]  Y. Kumazawa Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. , 2007, Gene.

[34]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[35]  P. Houde,et al.  Multilocus perspectives on the monophyly and phylogeny of the order Charadriiformes (Aves) , 2007, BMC Evolutionary Biology.

[36]  Rudolf P. Rohr,et al.  Ecophylogenetics: advances and perspectives , 2012, Biological reviews of the Cambridge Philosophical Society.

[37]  D. Faith,et al.  Climate Change Impacts on the Tree of Life: Changes in Phylogenetic Diversity Illustrated for Acropora Corals , 2012, Biology.

[38]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[39]  O. Bininda-Emonds,et al.  A phylogenetic supertree of the fowls (Galloanserae, Aves) , 2009 .

[40]  G. Barrowclough,et al.  Phylogeny, diversity, and classification of the Accipitridae based on DNA sequences of the RAG-1 exon , 2007 .

[41]  A. Couloux,et al.  Phylogeny of Laniarius: molecular data reveal L. liberatus synonymous with L. erlangeri and "plumage coloration" as unreliable morphological characters for defining species and species groups. , 2008, Molecular phylogenetics and evolution.

[42]  W. A. Cox,et al.  A Phylogenomic Study of Birds Reveals Their Evolutionary History , 2008, Science.

[43]  W. Willner,et al.  Scale decisions can reverse conclusions on community assembly processes. , 2014, Global Ecology and Biogeography.

[44]  M. Vences,et al.  Climatic oscillations triggered post-Messinian speciation of Western Palearctic brown frogs (Amphibia, Ranidae). , 2003, Molecular phylogenetics and evolution.

[45]  O. C. Marsh Notice of new reptiles from the Laramie Formation , 1892, American Journal of Science.

[46]  Thomas Ludwig,et al.  RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..

[47]  J. L. Gittleman,et al.  Preserving the Tree of Life , 2003, Science.

[48]  S. Evans,et al.  A discoglossid frog from the Middle Jurassic of England , 1990 .

[49]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[50]  C. Bleidorn,et al.  Molecular phylogeny of songbirds (Aves: Passeriformes) and the relative utility of common nuclear marker loci , 2008 .

[51]  E. Bridge,et al.  A phylogenetic framework for the terns (Sternini) inferred from mtDNA sequences: implications for taxonomy and plumage evolution. , 2005, Molecular phylogenetics and evolution.

[52]  M. Benton,et al.  Rocks and clocks: calibrating the Tree of Life using fossils and molecules. , 2007, Trends in ecology & evolution.

[53]  W. Thuiller,et al.  Building megaphylogenies for macroecology: taking up the challenge. , 2013, Ecography.

[54]  F. Sheldon,et al.  Relative patterns and rates of evolution in heron nuclear and mitochondrial DNA. , 2000, Molecular biology and evolution.

[55]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[56]  Todd H. Oakley,et al.  Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. , 2010, Ecology letters.

[57]  J. Gardner THE FOSSIL SALAMANDER PROAMPHIUMA CRETACEA ESTES (CAUDATA; AMPHIUMIDAE) AND RELATIONSHIPS WITHIN THE AMPHIUMIDAE , 2003 .

[58]  Wilfried Thuiller,et al.  Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. , 2010, Ecology letters.

[59]  L. Maiorano,et al.  Conserving the functional and phylogenetic trees of life of European tetrapods , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[60]  T. Davies,et al.  Exploring the phylogenetic history of mammal species richness , 2012 .

[61]  E. Braun,et al.  S20-2 Using molecular phylogenetics to interpret evolutionary changes in morphology and behavior in the Phasianidae , 2006 .

[62]  N. Isaac,et al.  Mammals on the EDGE: Conservation Priorities Based on Threat and Phylogeny , 2007, PloS one.

[63]  Cristina Roquet,et al.  Directional biases in phylogenetic structure quantification: a Mediterranean case study. , 2014, Ecography.

[64]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[65]  D. Mindell,et al.  Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. , 2005, Molecular phylogenetics and evolution.

[66]  D. Wake,et al.  Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. , 2008, Molecular phylogenetics and evolution.

[67]  J. Maisano,et al.  A Late Jurassic salamander (Amphibia: Caudata) from the Morrison Formation of North America , 2005 .

[68]  M. Wink,et al.  Molecular Phylogeny of Owls (Strigiformes) Inferred from DNA Sequences of the Mitochondrial Cytochrome b and the Nuclear RAG-1 gene , 2009 .

[69]  T. Hedderson,et al.  Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data , 2006, Cladistics : the international journal of the Willi Hennig Society.

[70]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[71]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[72]  T. Székely,et al.  A supertree approach to shorebird phylogeny , 2004, BMC Evolutionary Biology.

[73]  D. Mindell,et al.  Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes. , 2002, Molecular phylogenetics and evolution.

[74]  M. Donoghue,et al.  Phylogenetic Uncertainties and Sensitivity Analyses in Comparative Biology , 1996 .

[75]  T. Székely,et al.  Evolution of sexual size dimorphism in grouse and allies (Aves: Phasianidae) in relation to mating competition, fecundity demands and resource division , 2009, Journal of evolutionary biology.

[76]  M. Wink,et al.  Analysis of the taxonomy and nomenclature of the Procellariiformes based on complete nucleotide sequences of the mitochondrial cytochrome b gene , 2004 .

[77]  M. Arculeo,et al.  Post-Messinian evolutionary relationships across the Sicilian channel: Mitochondrial and nuclear markers link a new green toad from Sicily to African relatives , 2008, BMC Evolutionary Biology.

[78]  J. Wiens,et al.  A Revised Phylogeny of Holarctic Treefrogs (Genus Hyla) Based on Nuclear and Mitochondrial DNA Sequences , 2009 .

[79]  L. Maiorano,et al.  Threats from Climate Change to Terrestrial Vertebrate Hotspots in Europe , 2013, PloS one.

[80]  W. Durka,et al.  Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses , 2012 .

[81]  Antonis Rokas,et al.  Phylogenetic Analysis of Protein Sequence Data Using the Randomized Axelerated Maximum Likelihood (RAXML) Program , 2011, Current protocols in molecular biology.

[82]  R. A. Pyron,et al.  A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes , 2013, BMC Evolutionary Biology.

[83]  T. Townsend,et al.  Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. , 2012, Molecular phylogenetics and evolution.

[84]  D. Gower,et al.  Global patterns of diversification in the history of modern amphibians , 2007, Proceedings of the National Academy of Sciences.

[85]  C. Hänni,et al.  A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. , 2002, Molecular phylogenetics and evolution.

[86]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[87]  D. Penny The comparative method in evolutionary biology , 1992 .

[88]  Wilfried Thuiller,et al.  A road map for integrating eco-evolutionary processes into biodiversity models. , 2013, Ecology letters.

[89]  Travis C. Glenn,et al.  A Phylogeny of Birds Based on Over 1,500 Loci Collected by Target Enrichment and High-Throughput Sequencing , 2012, PloS one.

[90]  S. Evans,et al.  Frogs and salamanders from the Upper Jurassic Morrison Formation (Quarry Nine, Como Bluff) of North America , 1993 .