Tracing information flow on a global scale using Internet chain-letter data

Although information, news, and opinions continuously circulate in the worldwide social network, the actual mechanics of how any single piece of information spreads on a global scale have been a mystery. Here, we trace such information-spreading processes at a person-by-person level using methods to reconstruct the propagation of massively circulated Internet chain letters. We find that rather than fanning out widely, reaching many people in very few steps according to “small-world” principles, the progress of these chain letters proceeds in a narrow but very deep tree-like pattern, continuing for several hundred steps. This suggests a new and more complex picture for the spread of information through a social network. We describe a probabilistic model based on network clustering and asynchronous response times that produces trees with this characteristic structure on social-network data.

[1]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[2]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[3]  Peter Sheridan Dodds,et al.  Universal behavior in a generalized model of contagion. , 2004, Physical review letters.

[4]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[5]  A. Barabasi,et al.  Human dynamics: Darwin and Einstein correspondence patterns , 2005, Nature.

[6]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[7]  H. Stanley,et al.  Optimal paths in disordered complex networks. , 2003, Physical review letters.

[8]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[9]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[10]  Susan R. Wilson INTRODUCTION TO COMPUTATIONAL BIOLOGY: MAPS, SEQUENCES AND GENOMES. , 1996 .

[11]  Leeat Yariv,et al.  Diffusion on Social Networks , 2006 .

[12]  D. Watts,et al.  An Experimental Study of Search in Global Social Networks , 2003, Science.

[13]  Douglas D. Heckathorn,et al.  Respondent-driven sampling : A new approach to the study of hidden populations , 1997 .

[14]  M. Kearns,et al.  An Experimental Study of the Coloring Problem on Human Subject Networks , 2006, Science.

[15]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[16]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[17]  Kathleen C. Schwartzman,et al.  DIFFUSION IN ORGANIZATIONS AND SOCIAL MOVEMENTS: From Hybrid Corn to Poison Pills , 2007 .

[18]  Jure Leskovec,et al.  Worldwide Buzz: Planetary-Scale Views on an Instant-Messaging Network , 2007, WWW 2008.

[19]  Albert-László Barabási,et al.  Modeling bursts and heavy tails in human dynamics , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Peter R. Monge,et al.  Theories of Communication Networks , 2003 .

[21]  S. Berg Snowball Sampling—I , 2006 .

[22]  J. G. Oliveira,et al.  Human Dynamics: The Correspondence Patterns of Darwin and Einstein , 2005 .

[23]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, WWW '04.

[24]  E. Rogers,et al.  Diffusion of innovations , 1964, Encyclopedia of Sport Management.

[25]  Thomas W. Valente Network models of the diffusion of innovations , 1996, Comput. Math. Organ. Theory.

[26]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[27]  Eytan Adar,et al.  Implicit Structure and the Dynamics of Blogspace , 2004 .

[28]  Christos Faloutsos,et al.  Patterns of Cascading Behavior in Large Blog Graphs , 2007, SDM.

[29]  Martin Suter,et al.  Small World , 2002 .