Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review

[1]  A. Wu,et al.  Selective colorimetric detection of Cr(iii) and Cr(vi) using gallic acid capped gold nanoparticles. , 2016, Dalton transactions.

[2]  Qingquan Zhang,et al.  Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy. , 2016, Analytical chemistry.

[3]  L. Bai,et al.  Colorimetric Detection of Cadmium Ions Using DL-Mercaptosuccinic Acid-Modified Gold Nanoparticles. , 2016, Journal of nanoscience and nanotechnology.

[4]  N. Pradhan,et al.  Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS). , 2015, Biosensors & bioelectronics.

[5]  H. Santos,et al.  Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions , 2015 .

[6]  Lingxin Chen,et al.  Red-to-blue colorimetric detection of chromium via Cr (III)-citrate chelating based on Tween 20-stabilized gold nanoparticles , 2015 .

[7]  Peng Xu,et al.  Detection of the nanomolar level of total Cr[(iii) and (vi)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. , 2015, Nanoscale.

[8]  Orawon Chailapakul,et al.  Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles. , 2015, Talanta.

[9]  Jianxiu Du,et al.  Ethylenediaminetetraacetic Acid Functionalized Gold Nanoparticles for Sensitive Colorimetric Detection of Chromium(III) , 2014 .

[10]  Shu-Pao Wu,et al.  Colorimetric detection of Cd(II) ions based on di-(1H-pyrrol-2-yl)methanethione functionalized gold nanoparticles , 2014 .

[11]  Jinhua Li,et al.  Colorimetric detection of mercury species based on functionalized gold nanoparticles. , 2014, ACS applied materials & interfaces.

[12]  Yi Zhang,et al.  Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. , 2014, Analytical chemistry.

[13]  M. Umadevi,et al.  Silver and gold nanoparticles for sensor and antibacterial applications. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[14]  Huan‐Tsung Chang,et al.  Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. , 2014, Analytical chemistry.

[15]  C. Li,et al.  Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide. , 2014, Analytica chimica acta.

[16]  M. Yu Colorimetric Detection of Trace Arsenic(III) in Aqueous Solution Using Arsenic Aptamer and Gold Nanoparticles , 2014 .

[17]  P. Paul,et al.  Colorimetric detection of Cu2+ and Pb2+ ions using calix[4]arene functionalized gold nanoparticles , 2014, Journal of Chemical Sciences.

[18]  Zhaopeng Chen,et al.  Highly sensitive visual detection of copper ions based on the shape-dependent LSPR spectroscopy of gold nanorods. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[19]  Jia-Yaw Chang,et al.  Detection of arsenic(III) through pulsed laser-induced desorption/ionization of gold nanoparticles on cellulose membranes. , 2014, Analytical chemistry.

[20]  Tamer Ali,et al.  Thiol surfactant assembled on gold nanoparticles ion exchanger for screen-printed electrode fabrication. Potentiometric determination of Ce(III) in environmental polluted samples , 2014 .

[21]  P. Bermejo-Barrera,et al.  Functionalized gold nanoparticles for the detection of arsenic in water. , 2014, Talanta.

[22]  N. Pradhan,et al.  Biogenic synthesis of floral-shaped gold nanoparticles using a novel strain, Talaromyces flavus , 2013, Annals of Microbiology.

[23]  Wenrong Yang,et al.  Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. , 2013, Analytica chimica acta.

[24]  F. Qu,et al.  Colorimetric detection of Hg2+ using thioctic acid functionalized gold nanoparticles , 2013 .

[25]  N. Chandrasekaran,et al.  Simple colorimetric detection of Cr(III) in aqueous solutions by as synthesized citrate capped gold nanoparticles and development of a paper based assay , 2013 .

[26]  Zhaopeng Chen,et al.  Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles. , 2013, Talanta.

[27]  Dan Zhou,et al.  Sensitive and selective colorimetric detection of cadmium(II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole , 2013, Microchimica Acta.

[28]  Lina Zhang,et al.  Novel cellulose polyampholyte-gold nanoparticle-based colorimetric competition assay for the detection of cysteine and mercury(II). , 2013, Langmuir : the ACS journal of surfaces and colloids.

[29]  Zhaopeng Chen,et al.  Label-free colorimetric sensing of copper(II) ions based on accelerating decomposition of H2O2 using gold nanorods as an indicator. , 2013, The Analyst.

[30]  Xianxiang Wang,et al.  Colorimetric speciation of Cr(III) and Cr(VI) with a gold nanoparticle probe , 2013 .

[31]  Samuel S. R. Dasary,et al.  Sensitive and selective detection of trivalent chromium using Hyper Rayleigh Scattering with 5,5'-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles. , 2013, Sensors and actuators. B, Chemical.

[32]  Lingxin Chen,et al.  Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. , 2013, ACS applied materials & interfaces.

[33]  Ning Xia,et al.  Simple, rapid and label-free colorimetric assay for arsenic based on unmodified gold nanoparticles and a phytochelatin-like peptide , 2012 .

[34]  Chenxu Yu,et al.  Detection of chemical pollutants in water using gold nanoparticles as sensors: a review , 2012 .

[35]  Alberto Escarpa,et al.  Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. , 2012, Analytica chimica acta.

[36]  Chenghui Liu,et al.  Colorimetric Detection of Copper (II) Based on the Self-Assembly of Schiff’s Base-Functionalized Gold Nanoparticles , 2012 .

[37]  Hongjun Zhu,et al.  Novel, highly selective detection of Cr(III) in aqueous solution based on a gold nanoparticles colorimetric assay and its application for determining Cr(VI). , 2012, Analytica chimica acta.

[38]  Yong‐Uk Kwon,et al.  A bi-ligand co-functionalized gold nanoparticles-based calcium ion probe and its application to the detection of calcium ions in serum. , 2012, Chemical communications.

[39]  Wenting Zhi,et al.  Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution. , 2012, Chemical communications.

[40]  K. Phani,et al.  Facile and One Pot Synthesis of Gold Nanoparticles Using Tetraphenylborate and Polyvinylpyrrolidone for Selective Colorimetric Detection of Mercury Ions in Aqueous Medium , 2012, Journal of analytical methods in chemistry.

[41]  Lingxin Chen,et al.  A simple and sensitive colorimetric method for detection of mercury ions based on anti-aggregation of gold nanoparticles , 2012 .

[42]  M. Zhang,et al.  Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles. , 2012, The Analyst.

[43]  J. Gooding,et al.  A novel route to copper(II) detection using 'click' chemistry-induced aggregation of gold nanoparticles. , 2012, The Analyst.

[44]  Qi Kang,et al.  N-1-(2-mercaptoethyl)thymine modification of gold nanoparticles: a highly selective and sensitive colorimetric chemosensor for Hg2+. , 2011, The Analyst.

[45]  Zhaopeng Chen,et al.  Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. , 2011, ACS applied materials & interfaces.

[46]  Zheng-ping Li,et al.  One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb2+ ions , 2011 .

[47]  Yong Wang,et al.  Specifically colorimetric recognition of calcium, strontium, and barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable detection of calcium ion in water. , 2011, The Analyst.

[48]  Hong Zhao,et al.  Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine. , 2011, The Analyst.

[49]  L. Bai,et al.  Visual detection of barium ions using tiopronin functionalised gold nanoparticles , 2011 .

[50]  A. Mahapatra,et al.  A highly selective triphenylamine-based indolylmethane derivatives as colorimetric and turn-off fluorimetric sensor toward Cu2+ detection by deprotonation of secondary amines , 2011 .

[51]  Xingyu Jiang,et al.  Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. , 2011, Biosensors & bioelectronics.

[52]  Surin Hong,et al.  The sensitive, anion-selective detection of arsenate with poly(allylamine hydrochloride) by single particle plasmon-based spectroscopy. , 2011, Analytica chimica acta.

[53]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[54]  Muhammad Ali Syed,et al.  Gold nanoparticle based microbial detection and identification. , 2011, Journal of biomedical nanotechnology.

[55]  Zhang Yuping,et al.  Rapid Visual Detection of Calcium Ions Using Glutathione Functionalized Gold Nanoparticles , 2011, 2011 Third International Conference on Measuring Technology and Mechatronics Automation.

[56]  A. Imyim,et al.  Visual and colorimetric detection of mercury(II) ion using gold nanoparticles stabilized with a dithia-diaza ligand , 2011, Microchimica Acta.

[57]  M. Dubey,et al.  Selective Detection of Chemical and Biological Toxins Using Gold-Nanoparticle-Based Two-Photon Scattering Assay , 2011, IEEE Transactions on Nanotechnology.

[58]  Tingting Wang,et al.  Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. , 2010, ACS applied materials & interfaces.

[59]  Vincent M Rotello,et al.  Gold nanoparticle-fluorophore complexes: sensitive and discerning "noses" for biosystems sensing. , 2010, Angewandte Chemie.

[60]  Zhenxin Wang,et al.  Gold Nanoparticle-based Colorimetric Assay for Determination of Lead (II) in Aqueous Media , 2010 .

[61]  Subinoy Rana,et al.  Nanoparticles for detection and diagnosis. , 2010, Advanced drug delivery reviews.

[62]  Shunqing Xu,et al.  Gold nanoparticle-based biosensors , 2010 .

[63]  Yong Huang,et al.  Controllable aggregation and reversible pH sensitivity of AuNPs regulated by carboxymethyl cellulose. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[64]  R. Mahajan,et al.  Highly sensitive gold nanoparticle-based colorimetric sensing of mercury(II) through simple ligand exchange reaction in aqueous media. , 2010, ACS applied materials & interfaces.

[65]  Z. Su,et al.  L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light , 2010, Nanotechnology.

[66]  Paresh Chandra Ray,et al.  Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater. , 2009, Angewandte Chemie.

[67]  J. Hutchison,et al.  Malonamide-functionalized gold nanoparticles for selective, colorimetric sensing of trivalent lanthanide ions. , 2009, Analytical chemistry.

[68]  T. Pradeep,et al.  Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles , 2009 .

[69]  Daejin Kim,et al.  Bioinspired colorimetric detection of calcium(II) ions in serum using calsequestrin-functionalized gold nanoparticles. , 2009, Angewandte Chemie.

[70]  N. Rahbar,et al.  Solid phase extraction of lead and cadmium using solid sulfur as a new metal extractor prior to determination by flame atomic absorption spectrometry. , 2009, Journal of hazardous materials.

[71]  Marc R. Knecht,et al.  Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles , 2009, Analytical and bioanalytical chemistry.

[72]  K. Hamad-Schifferli,et al.  Selective release of multiple DNA oligonucleotides from gold nanorods. , 2009, ACS nano.

[73]  Yi Lu,et al.  Highly sensitive and selective colorimetric sensors for uranyl (UO2(2+)): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. , 2008, Journal of the American Chemical Society.

[74]  Wei-Lung Tseng,et al.  Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[75]  Xingyu Jiang,et al.  Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. , 2008, Angewandte Chemie.

[76]  Yi Lu,et al.  Label‐Free Colorimetric Detection of Lead Ions with a Nanomolar Detection Limit and Tunable Dynamic Range by using Gold Nanoparticles and DNAzyme , 2008 .

[77]  F. Petrucci,et al.  Method validation for determination of arsenic, cadmium, chromium and lead in milk by means of dynamic reaction cell inductively coupled plasma mass spectrometry. , 2008, Analytica chimica acta.

[78]  K. Hamad-Schifferli,et al.  Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[79]  B. Jena,et al.  Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle. , 2008, Talanta.

[80]  Anant Kumar Singh,et al.  Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. , 2008, Journal of the American Chemical Society.

[81]  Yingfu Li,et al.  Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. , 2008, Small.

[82]  Itamar Willner,et al.  Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. , 2008, Angewandte Chemie.

[83]  Xiaogang Liu,et al.  One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. , 2008, Journal of the American Chemical Society.

[84]  Su Ho Kim,et al.  Diazo-coupled calix[4]arenes for qualitative analytical screening of metal ions. , 2008, Talanta.

[85]  Jing Li,et al.  DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes , 2008, Nanotechnology.

[86]  Shizhen Song,et al.  Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. , 2008, Toxicology.

[87]  I. Willner,et al.  Cover Picture: Increasing the Complexity of Periodic Protein Nanostructures by the Rolling‐Circle‐Amplified Synthesis of Aptamers (Angew. Chem. Int. Ed. 1/2008) , 2008 .

[88]  Hossam Haick,et al.  Chemical sensors based on molecularly modified metallic nanoparticles , 2007 .

[89]  Hye-Young Park,et al.  Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles , 2007 .

[90]  Cherumuttathu H. Suresh,et al.  In Situ Synthesis of Metal Nanoparticles and Selective Naked-Eye Detection of Lead Ions from Aqueous Media , 2007 .

[91]  J. Irudayaraj,et al.  Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[92]  Chad A Mirkin,et al.  Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. , 2007, Angewandte Chemie.

[93]  A. Salifoglou,et al.  pH-specific synthesis and spectroscopic, structural, and magnetic studies of a chromium(III)-citrate species. Aqueous solution speciation of the binary chromium(III)-citrate system. , 2007, Inorganic chemistry.

[94]  P. Jain,et al.  Au nanoparticles target cancer , 2007 .

[95]  Guonan Chen,et al.  Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. , 2007, Journal of nanoscience and nanotechnology.

[96]  Satyabrata Si,et al.  One-Dimensional Assembly of Peptide-Functionalized Gold Nanoparticles: An Approach Toward Mercury Ion Sensing , 2007 .

[97]  D. Groneberg,et al.  Journal of Occupational Medicine and Toxicology the Toxicity of Cadmium and Resulting Hazards for Human Health , 2006 .

[98]  C. Nascimento,et al.  Bioavailability of cadmium and lead in a soil amended with phosphorus fertilizers , 2006 .

[99]  Chun-Hsien Chen,et al.  A simple strategy for prompt visual sensing by gold nanoparticles: general applications of interparticle hydrogen bonds. , 2006, Angewandte Chemie.

[100]  Rong-Hua Yang,et al.  A spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels. , 2006, Angewandte Chemie.

[101]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[102]  Magdalena Gabig-Ciminska,et al.  Developing nucleic acid-based electrical detection systems. , 2006 .

[103]  M. El-Sayed,et al.  Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. , 2006, Chemical Society reviews.

[104]  U. Bunz,et al.  Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water. , 2006, Journal of the American Chemical Society.

[105]  D. Groneberg,et al.  Occupational medicine and toxicology , 2006, Journal of Occupational Medicine and Toxicology (London, England).

[106]  Matthew M. Rex,et al.  Pushing the limits of mercury sensors with gold nanorods. , 2006, Analytical chemistry.

[107]  S. Franzen,et al.  Probing BSA binding to citrate-coated gold nanoparticles and surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[108]  Shuming Nie,et al.  Real-Time Detection of Virus Particles and Viral Protein Expression with Two-Color Nanoparticle Probes , 2005, Journal of Virology.

[109]  Noriaki Hara,et al.  SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. , 2005, Analytical chemistry.

[110]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[111]  M. Nicol,et al.  An electrochemical study of the dissolution of gold in thiosulfate solutions. Part II. Effect of Copper , 2005 .

[112]  V. Rotello,et al.  Controlled Plasmon Resonance of Gold Nanoparticles Self-Assembled with PAMAM Dendrimers , 2005 .

[113]  Itamar Willner,et al.  Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. , 2005, Nano letters.

[114]  Juewen Liu,et al.  Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. , 2004, Journal of the American Chemical Society.

[115]  Itamar Willner,et al.  Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles , 2004 .

[116]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[117]  M. Nicol,et al.  An electrochemical study of the dissolution of gold in thiosulfate solutions Part I: Alkaline solutions , 2003 .

[118]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[119]  Yi Lu,et al.  A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. , 2003, Journal of the American Chemical Society.

[120]  S. Efrima,et al.  Xanthate Capping of Silver, Copper, and Gold Colloids , 2002 .

[121]  P. Nellist,et al.  Dialkyl sulfides: Novel passivating agents for gold nanoparticles , 2002 .

[122]  Joseph T. Hupp,et al.  Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions , 2001 .

[123]  T. Yonezawa,et al.  Controlled Formation of Smaller Gold Nanoparticles by the Use of Four-Chained Disulfide Stabilizer , 2001 .

[124]  C. Mirkin,et al.  Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides , 2000 .

[125]  F. Senocq,et al.  Gold Nanoparticles from Self-assembled Gold(I) Amine Precursors. , 2000 .

[126]  P Englebienne,et al.  Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. , 1998, The Analyst.

[127]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[128]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[129]  James R. Heath,et al.  PRESSURE/TEMPERATURE PHASE DIAGRAMS AND SUPERLATTICES OF ORGANICALLY FUNCTIONALIZED METAL NANOCRYSTAL MONOLAYERS: THE INFLUENCE OF PARTICLE SIZE, SIZE DISTRIBUTION, AND SURFACE PASSIVANT , 1997 .

[130]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[131]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[132]  A. Scalbert,et al.  Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation , 1996 .

[133]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[134]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[135]  G. Kränzlein Zum 100 jährigen Gedächtnis der Arbeiten von F. F. Runge , 1935 .