Aglite lidar: a portable elastic lidar system for investigating aerosol and wind motions at or around agricultural production facilities

The Aglite Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of Aglite is to map the concentration of PM 10 and PM 2.5 in aerosol plumes from agricultural and other sources. Aglite uses a high-repetition rate low-pulse energy 3-wavelength YAG laser with photon-counting detection together with a steerable pointing mirror to measure aerosol concentration with high spatial and temporal resolution. Aglite has been used in field campaigns in Iowa, Utah and California. The instrument is described, and performance and lidar sensitivity data are presented. The value of the lidar in aerosol plume mapping is demonstrated, as is the ability to extract wind-speed information from the lidar data.

[1]  C. Böckmann Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions. , 2001, Applied optics.

[2]  William P. Kustas,et al.  Lidar Measurement of Boundary Layer Evolution to Determine Sensible Heat Fluxes , 2005 .

[3]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[4]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[5]  W. Buttler,et al.  Remote Sensing of Three-dimensional Winds with Elastic Lidar: Explanation of Maximum Cross-correlation Method , 2001 .

[6]  J. Wilczak,et al.  The Three-Dimensional Structure of Convection in the Atmospheric Surface Layer , 1980 .

[7]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.

[8]  Near-field dust exposure from cotton field tilling and harvesting. , 2008, Journal of environmental quality.

[9]  Christian C. Marchant Algorithm development of the Aglite-lidar instrument , 2008 .

[10]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[11]  R. Southard,et al.  Agricultural dust production in standard and conservation tillage systems in the San Joaquin Valley. , 2005, Journal of environmental quality.

[12]  Britt A. Holmén,et al.  Lidar-assisted measurement of PM10 emissions from agricultural tilling in California's San Joaquin Valley – Part II: emission factors , 2001 .

[13]  J. Businger,et al.  Case Studies of a Convective Plume and a Dust Devil , 1970 .

[14]  J. Businger,et al.  Thermally Indirect Motions in the Convective Atmospheric Boundary Layer , 1983 .

[15]  Y. Sasano,et al.  Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. , 1989, Applied optics.

[16]  M. Singer,et al.  Intensive land preparation emits respirable dust , 1997 .

[17]  William P. Kustas,et al.  Comparing Aircraft-Based Remotely Sensed Energy Balance Fluxes with Eddy Covariance Tower Data Using Heat Flux Source Area Functions , 2005 .

[18]  V. S. Scott,et al.  Cloud physics lidar: instrument description and initial measurement results. , 2013, Applied optics.

[19]  J P Wolf,et al.  Derivation of Mount Pinatubo stratospheric aerosol mean size distribution by means of a multiwavelength lidar. , 1994, Applied optics.

[20]  Albert Ansmann,et al.  Scanning 6-Wavelength 11-Channel Aerosol Lidar , 2000 .

[21]  W. Eichinger,et al.  Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations , 1994 .

[22]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[23]  Carl A. Friehe Fine-Scale Measurements of Velocity, Temperature, and Humidity in the Atmospheric Boundary Layer , 1986 .

[24]  David H Sliney,et al.  Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Britt A. Holmén,et al.  Application of elastic lidar to PM10 emissions from agricultural nonpoint sources , 1998 .

[26]  Ludwig Prandtl,et al.  Führer durch die Strömungslehre , 1990 .

[27]  H Quenzel,et al.  Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm. , 1981, Applied optics.

[28]  T. Wilkerson,et al.  Hydrodynamic Aspects of Shock Tube Spectroscopy , 1960 .

[29]  V. Derr,et al.  A comparison of remote sensing of the clear atmosphere by optical, radio, and acoustic radar techniques. , 1970, Applied optics.

[30]  V. Zuev,et al.  On Lidar Sounding of the Atmosphere to Estimate Static and Dynamic Characteristics of Aerosol Inhomogeneities , 1973 .

[31]  Benjamin M. Herman,et al.  Determination of aerosol height distributions by lidar , 1972 .

[32]  R. Dhillon,et al.  For the safe use of lasers , 1989 .

[33]  N. Takeuchi,et al.  Horizontal Wind Vector Determination from the Displacement of Aerosol Distribution Patterns Observed by a Scanning Lidar , 1982 .

[34]  Kori D. Moore,et al.  Lidar based emissions measurement at the whole facility scale: Method and error analysis , 2009 .

[35]  Kori D. Moore,et al.  Aglite lidar: calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar , 2009 .

[36]  E. Eloranta,et al.  Calculation of divergence and vertical motion from volume imaging lidar data , 1995 .

[37]  Fred Moshary,et al.  Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization , 2006 .

[38]  A. Jursa,et al.  Handbook of geophysics and the space environment , 1985 .

[39]  Thomas D. Wilkerson,et al.  Prototype holographic atmospheric scanner for environmental remote sensing , 1999 .

[40]  H. Kong,et al.  Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere. , 1997, Applied optics.

[41]  Thomas H. Chyba,et al.  Eye-safe compact scanning LIDAR technology , 2007 .

[42]  Arnold L. Augustoni Laser hazard analysis for airborne AURA (Big Sky variant) Proteus platform. , 2004 .

[43]  Gail E. Bingham,et al.  Retrieval of physical properties of particulate emission from animal feeding operations using three-wavelength elastic lidar measurements , 2006, SPIE Optics + Photonics.

[44]  William P. Hooper,et al.  Lidar Measurements of Wind in the Planetary Boundary Layer: The Method, Accuracy and Results from Joint Measurements with Radiosonde and Kytoon. , 1986 .

[45]  K. Rajeev,et al.  Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution. , 1998, Applied optics.

[46]  Edwin W. Eloranta,et al.  The Determination of Wind Speeds in the Boundary Layer by Monostatic Lidar , 1975 .

[47]  R. Measures Laser remote sensing : fundamentals and applications , 1984 .

[48]  Fred P. Seeber,et al.  OP-TEC national center for optics and photonics education and ANSI Z136.5 American National Standard for the safe use of lasers in educational institutions – How they will work together to improve laser safety in educational institutions , 2009 .

[49]  D. Müller,et al.  Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution. , 2004, Applied optics.

[50]  M. J. Singer,et al.  Respirable‐Dust Production from Agricultural Operations in the Sacramento Valley, California , 1996 .

[51]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[52]  Harold B. Dixon VIII. On the movements of the flame in the explosion of gases. , 1903, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character.

[53]  Britt A. Holmén,et al.  Near-source particulate emissions and plume dynamics from agricultural field operations , 2008 .