Long Distance Quantum Key Distribution with Continuous Variables

We present a continuous-variable quantum key distribution protocol combining a continuous but slightly non-Gaussian modulation together with a efficient reverse reconciliation scheme. We establish the security of this protocol against collective attacks which correspond to a linear quantum channel. In particular, all Gaussian attacks are considered in our framework. We show that this protocol outperforms all known practical protocols, even taking into account finite size effects.

[1]  Anthony Leverrier Theoretical study of continuous-variable quantum key distribution , 2009 .

[2]  Valerio Scarani,et al.  Finite-key analysis for practical implementations of quantum key distribution , 2008, 0811.2628.

[3]  P. Grangier,et al.  Finite-size analysis of a continuous-variable quantum key distribution , 2010, 1005.0339.

[4]  Anthony Leverrier,et al.  Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. , 2008, Physical review letters.

[5]  Anthony Leverrier,et al.  Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation , 2009, 0912.4132.

[6]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[7]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical Review Letters.

[8]  P. Grangier,et al.  Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation , 2011, Physical Review A.

[9]  Zheshen Zhang,et al.  A 24 km fiber-based discretely signaled continuous variable quantum key distribution system. , 2009, Optics express.

[10]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[11]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[12]  J. Cirac,et al.  Extremality of Gaussian quantum states. , 2005, Physical review letters.

[13]  Miguel Navascués,et al.  Optimality of Gaussian attacks in continuous-variable quantum cryptography. , 2006, Physical review letters.

[14]  H. Lo,et al.  Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers , 2007, 0709.3666.

[15]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[16]  S. McLaughlin,et al.  Quantum key distribution over 25 km with an all-fiber continuous-variable system , 2007, 0706.4255.

[17]  J. Cirac,et al.  De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. , 2008, Physical review letters.

[18]  Romain Alléaume,et al.  Multidimensional reconciliation for continuous-variable quantum key distribution , 2007, 2008 IEEE International Symposium on Information Theory.

[19]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[20]  N. Gisin,et al.  High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres , 2009, 0903.3907.

[21]  H. Lo,et al.  A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution , 2010, 1006.1257.

[22]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[23]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[24]  Anthony Leverrier,et al.  Continuous-variable Quantum Key Distribution protocols with a discrete modulation , 2010 .

[25]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[26]  T.C.Ralph Continuous variable quantum cryptography , 1999, quant-ph/9907073.