Pseudo‐marginal Metropolis‐Hastings sampling using averages of unbiased estimators
暂无分享,去创建一个
[1] C. Andrieu,et al. Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.
[2] M. Beaumont. Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.
[3] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[4] Aaron Smith,et al. The use of a single pseudo-sample in approximate Bayesian computation , 2014, Stat. Comput..
[5] Christophe Andrieu,et al. Establishing some order amongst exact approximations of MCMCs , 2014, 1404.6909.
[6] P. Moral,et al. A nonasymptotic theorem for unnormalized Feynman-Kac particle models , 2011 .
[7] Christophe Andrieu,et al. Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers , 2013, 1312.6432.
[8] Martin Hairer,et al. An Introduction to Stochastic PDEs , 2009, 0907.4178.
[9] J. Rosenthal,et al. On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.
[10] Maurizio Filippone,et al. Pseudo-Marginal Bayesian Inference for Gaussian Processes , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[11] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[12] Chris Sherlock,et al. Optimal Scaling for the Pseudo-Marginal Random Walk Metropolis: Insensitivity to the Noise Generating Mechanism , 2014, 1408.4344.
[13] John G. Kemeny,et al. Finite Markov chains , 1960 .
[14] P. Baxendale. Renewal theory and computable convergence rates for geometrically ergodic Markov chains , 2005, math/0503515.
[15] Peter J. Diggle,et al. Combining data from multiple spatially referenced prevalence surveys using generalized linear geostatistical models , 2013, 1308.2790.
[16] Anthony Lee,et al. Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation , 2012, 1210.6703.
[17] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .