Prussian blue: a new framework of electrode materials for sodium batteries.

Prussian blue and its analogues consisting of different transition-metal ions (Fe, Mn, Ni, Cu, Co and Zn) have been synthesized at room temperature. Insertion of Na into KFe(2)(CN)(6) in a carbonate electrolyte exhibited a reversible capacity near 100 mA h g(-1) with no capacity fade in 30 cycles. The data indicate that a Na-ion battery with a Prussian blue framework as a cathode will be feasible.

[1]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[2]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[3]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[4]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[5]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[6]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[7]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[8]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[9]  Yi Cui,et al.  The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes , 2011 .

[10]  G. Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[11]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[12]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[13]  M. Ware Prussian Blue: Artists' Pigment and Chemists' Sponge , 2008 .

[14]  H. Kahlert,et al.  Electrochemical and mechanochemical formation of solid solutions of potassium copper(II)/zinc(II) hexacyanocobaltate(III)/hexacyanoferrate(III) KCuxZn1-x[hcc]x[hcf]1-x , 2005 .

[15]  Amit Kumar,et al.  Structural and magnetic properties of Fe[Fe(CN)6]4H2O , 2005 .

[16]  E. Reguera,et al.  On the crystal structures of some nickel hexacyanoferrates (II,III) , 2004, Powder Diffraction.

[17]  J. Yakhmi,et al.  Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates. , 2002, Inorganic chemistry.

[18]  K. Hashimoto,et al.  Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues. , 2002, Inorganic chemistry.

[19]  T. Yokoyama,et al.  Local structure of a trapped photoexcited state of a Fe-Co cyanide studied by x-ray-absorption fine-structure spectroscopy , 1999 .

[20]  John B. Goodenough,et al.  Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation , 1997 .

[21]  O. Tillement,et al.  ELectrochemical studies of mixed valence NASICON , 1992 .

[22]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[23]  J. Kummer,et al.  A Sodium-Sulfur Secondary Battery , 1967 .