A New Fuzzy Multidimensional Model

As a result of the use of OLAP technology in new fields of knowledge and the merging of data from different sources, it has become necessary for models to support this technology. In this paper, we shall propose a new multidimensional model that can manage imprecision in both dimensions and facts and hide the complexity to the end user. The multidimensional structure is therefore able to model data imprecision resulting from the integration of data from different sources or even information from experts, which it does by means of fuzzy logic

[1]  Anne Laurent Querying Fuzzy Multidimensional Databases: Unary Operators and Their Properties , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[2]  Anindya Datta,et al.  The cube data model: a conceptual model and algebra for on-line analytical processing in data warehouses , 1999, Decis. Support Syst..

[3]  Bernadette Bouchon-Meunier,et al.  Fuzzy Data Mining from Multidimensional Databases , 2000 .

[4]  Reda Alhajj,et al.  Integrating fuzziness into OLAP for multidimensional fuzzy association rules mining , 2003, Third IEEE International Conference on Data Mining.

[5]  Elke A. Rundensteiner,et al.  Evaluating aggregates in possibilistic relational databases , 1992, Data Knowl. Eng..

[6]  Jiawei Han,et al.  Towards on-line analytical mining in large databases , 1998, SGMD.

[7]  Bernadette Bouchon-Meunier,et al.  Towards Fuzzy-OLAP Mining , 2001, KDD 2001.

[8]  Daniel Sánchez,et al.  A Flexible Approach to the Multidimensional Model: The Fuzzy Datacube , 2003, CAEPIA.

[9]  Luca Cabibbo,et al.  Querying Multidimensional Databases , 1997, DBPL.

[10]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[11]  Daniel Sánchez,et al.  On a Characterization of Fuzzy Bags , 2003, IFSA.

[12]  PedersenTorben Bach,et al.  A foundation for capturing and querying complex multidimensional data , 2001 .

[13]  Reda Alhajj,et al.  Fuzzy OLAP association rules mining-based modular reinforcement learning approach for multiagent systems , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Sunita Sarawagi,et al.  Modeling multidimensional databases , 1997, Proceedings 13th International Conference on Data Engineering.

[15]  Chang Li,et al.  A data model for supporting on-line analytical processing , 1996, CIKM '96.

[16]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[17]  Daniel Sánchez,et al.  A New Proposal of Aggregation Functions: The Linguistic Summary , 2003, IFSA.

[18]  Luca Cabibbo,et al.  A Logical Approach to Multidimensional Databases , 1998, EDBT.

[19]  Christian S. Jensen,et al.  A foundation for capturing and querying complex multidimensional data , 2001, Inf. Syst..

[20]  Daniel Sánchez,et al.  Fuzzy association rules: general model and applications , 2003, IEEE Trans. Fuzzy Syst..

[21]  Jiawei Han,et al.  OLAP Mining: Integration of OLAP with Data Mining , 1997, DS-7.

[22]  Ronald R. Yager,et al.  MAM and MOM bag operators for aggregation , 1993, Inf. Sci..

[23]  Curtis E. Dyreson,et al.  Information Retrieval from an Incomplete Data Cube , 1996, VLDB.

[24]  R. Yager ON THE THEORY OF BAGS , 1986 .