Numerical Modelling of the Anisotropic Mechanical Behaviour of Opalinus Clay at the Laboratory-Scale Using FEM/DEM

The Opalinus Clay (OPA) is an argillaceous rock formation selected to host a deep geologic repository for high-level nuclear waste in Switzerland. It has been shown that the excavation damaged zone (EDZ) in this formation is heavily affected by the anisotropic mechanical response of the material related to the presence of bedding planes. In this context, the purpose of this study is twofold: (i) to illustrate the new developments that have been introduced into the combined finite-discrete element method (FEM/DEM) to model layered materials and (ii) to demonstrate the effectiveness of this new modelling approach in simulating the short-term mechanical response of OPA at the laboratory-scale. A transversely isotropic elastic constitutive law is implemented to account for the anisotropic elastic modulus, while a procedure to incorporate a distribution of preferentially oriented defects is devised to capture the anisotropic strength. Laboratory results of indirect tensile tests and uniaxial compression tests are used to calibrate the numerical model. Emergent strength and deformation properties, together with the simulated damage mechanisms, are shown to be in strong agreement with experimental observations. Subsequently, the calibrated model is validated by investigating the effect of confinement and the influence of the loading angle with respect to the specimen anisotropy. Simulated fracture patterns are discussed in the context of the theory of brittle rock failure and analyzed with reference to the EDZ formation mechanisms observed at the Mont Terri Underground Research Laboratory.

[1]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[2]  Herbert H. Einstein,et al.  Fracture coalescence in rock-type materials under uniaxial and biaxial compression , 1998 .

[3]  Luis F. Vesga,et al.  DEM analysis of the crack propagation in brittle clays under uniaxial compression tests , 2008 .

[4]  M. Yan,et al.  Numerical modelling of brittle fracture and step-path failure: from laboratory to rock slope scale , 2008 .

[5]  P. Cundall,et al.  A bonded-particle model for rock , 2004 .

[6]  Patrick Lebon,et al.  The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment , 2007 .

[7]  J. P. Henry,et al.  Laboratory investigation of the mechanical behaviour of Tournemire shale , 1997 .

[8]  Joseph F Labuz,et al.  EXPERIMENTAL ANALYSIS OF CRACK PROPAGATION IN GRANITE , 1985 .

[9]  C. A. Tang,et al.  Numerical study on failure mechanism of tunnel in jointed rock mass , 2008 .

[10]  Valentin Gischig,et al.  Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression , 2011 .

[11]  J. P. Henry,et al.  ASSESSMENT OF SOME FAILURE CRITERIA FOR STRONGLY ANISOTROPIC GEOMATERIALS , 1998 .

[12]  C. Martin,et al.  The mechanical behaviour of weak mudstone (Opalinus Clay) at low stresses , 2007 .

[13]  Bert Sluys,et al.  Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces , 2000 .

[14]  C. Scholz,et al.  Dilatancy in the fracture of crystalline rocks , 1966 .

[15]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[16]  Shuang You,et al.  Model for Transversely Isotropic Materials Based on Distinct Lattice Spring Model (DLSM) , 2011, J. Comput..

[17]  T. C. T. Ting,et al.  Anisotropic Elasticity: Theory and Applications , 1996 .

[18]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[19]  O. K. Mahabadi,et al.  Y-Geo: New Combined Finite-Discrete Element Numerical Code for Geomechanical Applications , 2012 .

[20]  Evert Hoek,et al.  Strength of jointed rock masses , 1983 .

[21]  A. Dyskin,et al.  A continuum model of layered rock masses with non-associative joint plasticity , 1998 .

[22]  J. Curran,et al.  Full 3D finite element Cosserat formulation with application in layered structures , 2009 .

[23]  T. Wanne POSIVA 2002-05 Rock strength and deformation dependence on schistosity Simulation of rock with PFC 3 D , 2011 .

[24]  Tong Zhu,et al.  Correction to “Oxidant (O3+NO2) production processes and formation regimes in Beijing” , 2010 .

[25]  Deane K. Smith,et al.  Studies in mineralogy and Precambrian geology , 1972 .

[26]  O. K. Mahabadi,et al.  A novel approach for micro‐scale characterization and modeling of geomaterials incorporating actual material heterogeneity , 2012 .

[27]  Herbert H. Einstein,et al.  Numerical modeling of fracture coalescence in a model rock material , 1998 .

[28]  E. Frank,et al.  INFLUENCE OF BEDDING PLANES TO EDZ-EVOLUTION AND THE COUPLED HM PROPERTIES OF OPALINUS CLAY , 2007 .

[29]  Paul Bossart,et al.  Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory , 2002 .

[30]  M. Naumann,et al.  Experimental investigations on anisotropy in dilatancy, failure and creep of Opalinus Clay , 2007 .

[31]  Mark S. Diederichs,et al.  Manuel Rocha Medal Recipient Rock Fracture and Collapse Under Low Confinement Conditions , 2003 .

[32]  D. Potyondy,et al.  Bonded-Particle Simulations of the In-Situ Failure Test At Olkiluoto , 2001 .

[33]  P. K. Kaiser,et al.  Experimental Study of Brittle Behavior of Clay Shale in Rapid Triaxial Compression , 2011, Rock Mechanics and Rock Engineering.

[34]  Robert Charlier,et al.  A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models , 2006 .

[35]  Mark S. Diederichs,et al.  Instability of hard rockmasses, the role of tensile damage and relaxation , 2000 .

[36]  E. Rutter Experimental Rock Deformation—the Brittle Field , 1979 .

[37]  小田 匡寛 Mechanism of Brittle Fracture of Rock, Part I-Theory of the Fracture Process, Part II-Experimental Studies, Part III-Fracture intension and urider Long-Term Loading, By Z. T. Bierriawski, Int. J. Rock Mech. Min. Sci., Vol 4, p. 395-430 , 1968 .

[38]  Z. Bieniawski Determining rock mass deformability: experience from case histories , 1978 .

[39]  S. Siegesmund,et al.  Influence of carbonate microfabrics on the failure strength of claystones , 2009 .

[40]  A. Munjiza,et al.  Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms , 2002 .

[41]  John-Paul Latham,et al.  Detonation gas model for combined finite‐discrete element simulation of fracture and fragmentation , 2000 .

[42]  Frédéric Collin,et al.  SWITCHING DEFORMATION MODES IN POST-LOCALIZATION SOLUTIONS WITH A QUASIBRITTLE MATERIAL , 2006 .

[43]  A. Munjiza The Combined Finite-Discrete Element Method , 2004 .

[44]  C. Derek Martin,et al.  Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading , 2010 .

[45]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[46]  T. Popp,et al.  Anisotropy of seismic and mechanical properties of Opalinus clay during triaxial deformation in a multi-anvil apparatus , 2007 .

[47]  Shaoquan Kou,et al.  Crack propagation and coalescence in brittle materials under compression , 1998 .

[48]  R. H. Evans,et al.  Microcracking and stress-strain curves for concrete in tension , 1968 .

[49]  K. Gray,et al.  The Mechanical Behavior of Anisotropic Sedimentary Rocks , 1967 .

[50]  C. Martin,et al.  Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength , 1997 .

[51]  Antonio Munjiza,et al.  Combined single and smeared crack model in combined finite-discrete element analysis , 1999 .

[52]  Fred A. Donath,et al.  Effects of Cohesion and Granularity on Deformational Behavior of Anisotropic Rock , 1972 .

[53]  A. Munjiza The Combined Finite-Discrete Element Method: Munjiza/Discrete Element Method , 2004 .

[54]  Z. T. Bieniawski Mechanism of brittle fracture of rock. Parts 1-3 , 1967 .

[55]  O. K. Mahabadi,et al.  Investigating the Influence of Micro-scale Heterogeneity and Microstructure on the Failure and Mechanical Behaviour of Geomaterials , 2012 .

[56]  O. K. Mahabadi,et al.  Y-GUI: A graphical user interface and pre-processor for the combined finite-discrete element code, Y2D, incorporating material heterogeneity , 2010, Comput. Geosci..

[57]  Paul Tapponnier,et al.  Development of stress-induced microcracks in Westerly Granite , 1976 .

[58]  Peter K. Kaiser,et al.  Numerical simulation of cumulative damage and seismic energy release during brittle rock failure-Part I: Fundamentals , 1998 .

[59]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[60]  Bo-Hyun Kim,et al.  Rock Mechanics Advances for Underground Construction in Civil Engineering and Mining , 2008 .

[61]  Dedecker Fabian,et al.  Evaluation of damage-induced permeability using a three-dimensional Adaptive Continuum/Discontinuum Code (AC/DC) , 2007 .

[62]  W. F. Brace,et al.  A note on brittle crack growth in compression , 1963 .

[63]  S. Nemat-Nasser,et al.  Brittle failure in compression: splitting faulting and brittle-ductile transition , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[64]  C. Tsang,et al.  Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays , 2004 .

[65]  K. T. Chau,et al.  Analysis of crack coalescence in rock-like materials containing three flaws—Part I: experimental approach , 2001 .

[66]  John M Kemeny,et al.  Effective moduli, non-linear deformation and strength of a cracked elastic solid , 1986 .

[67]  D. Owen,et al.  A combined finite‐discrete element method in transient dynamics of fracturing solids , 1995 .