Identification of links between small molecules and miRNAs in human cancers based on transcriptional responses

[1]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[2]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[3]  Zhen-wu Zhang,et al.  [The roles of miR-17-92 cluster in mammal development and tumorigenesis]. , 2009, Yi chuan = Hereditas.

[4]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[5]  D. Banerjee,et al.  Pharmacogenomics of microRNA: a miRSNP towards individualized therapy. , 2007, Pharmacogenomics.

[6]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[7]  William C Reinhold,et al.  MicroRNAs modulate the chemosensitivity of tumor cells , 2008, Molecular Cancer Therapeutics.

[8]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[9]  Vivek Jayaswal,et al.  Identification of microRNA-mRNA modules using microarray data , 2011, BMC Genomics.

[10]  George A. Calin,et al.  Mammalian microRNAs: a small world for fine-tuning gene expression , 2006, Mammalian Genome.

[11]  R. Tagliaferri,et al.  Discovery of drug mode of action and drug repositioning from transcriptional responses , 2010, Proceedings of the National Academy of Sciences.

[12]  Jian Luo,et al.  Methyl-CpG binding protein MBD2 is implicated in methylation-mediated suppression of miR-373 in hilar cholangiocarcinoma. , 2011, Oncology reports.

[13]  T. Barrette,et al.  Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. , 2007, Neoplasia.

[14]  Yanli Wang,et al.  PubChem: a public information system for analyzing bioactivities of small molecules , 2009, Nucleic Acids Res..

[15]  R. Spizzo,et al.  RNA inhibition, microRNAs, and new therapeutic agents for cancer treatment. , 2009, Clinical lymphoma & myeloma.

[16]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[17]  Matthias E. Futschik,et al.  Inferring modules from human protein interactome classes , 2010, BMC Systems Biology.

[18]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[19]  William Pao,et al.  Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer , 2009, Proceedings of the National Academy of Sciences.

[20]  Chunquan Li,et al.  SubpathwayMiner: a software package for flexible identification of pathways , 2009, Nucleic acids research.

[21]  K. Guan,et al.  Expanding mTOR signaling , 2007, Cell Research.

[22]  H. Janssen,et al.  Prospects of RNAi and microRNA-based therapies for hepatitis C , 2009, Expert opinion on biological therapy.

[23]  Zhen Su,et al.  EasyGO: Gene Ontology-based annotation and functional enrichment analysis tool for agronomical species , 2007, BMC Genomics.

[24]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[25]  Y. Martin,et al.  Do structurally similar molecules have similar biological activity? , 2002, Journal of medicinal chemistry.

[26]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[27]  Yuriy Gusev,et al.  Computational analysis of biological functions and pathways collectively targeted by co-expressed microRNAs in cancer , 2007, BMC Bioinformatics.

[28]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[29]  R. Aft,et al.  Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death , 2002, British Journal of Cancer.

[30]  Qing Wu,et al.  miREnvironment Database: providing a bridge for microRNAs, environmental factors and phenotypes , 2011, Bioinform..

[31]  Zhongming Zhao,et al.  Integrative network analysis identifies key genes and pathways in the progression of hepatitis C virus induced hepatocellular carcinoma , 2011, BMC Medical Genomics.

[32]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Qihong Huang,et al.  Small-molecule inhibitors of microrna miR-21 function. , 2008, Angewandte Chemie.

[34]  Haifeng Li,et al.  Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation , 2011, PLoS Comput. Biol..

[35]  I. M. Neiman,et al.  [Inflammation and cancer]. , 1974, Patologicheskaia fiziologiia i eksperimental'naia terapiia.

[36]  D. Apter From Dream to Reality , 1994 .

[37]  Yixue Li,et al.  Gene expression module-based chemical function similarity search , 2008, Nucleic acids research.

[38]  H. Atmaca,et al.  Enhancing cytotoxic and apoptotic effect in OVCAR-3 and MDAH-2774 cells with all-trans retinoic acid and zoledronic acid: a paradigm of synergistic molecular targeting treatment for ovarian cancer , 2010, Journal of experimental & clinical cancer research : CR.

[39]  Rainer Schrader,et al.  Small Molecule Subgraph Detector (SMSD) toolkit , 2009, J. Cheminformatics.

[40]  R. Aft,et al.  Chemosensitizing and cytotoxic effects of 2-deoxy-D-glucose on breast cancer cells. , 2009, Journal of cancer research and therapeutics.

[41]  N. Chen,et al.  Autophagy as a therapeutic target in cancer , 2011, Cancer biology & therapy.

[42]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[43]  Wei Li,et al.  Dissection of human MiRNA regulatory influence to subpathway , 2012, Briefings Bioinform..

[44]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[45]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[46]  Patricia Soteropoulos,et al.  A micro‐RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas , 2007, Genes, chromosomes & cancer.

[47]  G. Calin,et al.  Targeting MicroRNAs With Small Molecules: From Dream to Reality , 2010, Clinical pharmacology and therapeutics.

[48]  George A Calin,et al.  Micro-RNA profiling in kidney and bladder cancers. , 2007, Urologic oncology.

[49]  P. Bork,et al.  Drug Target Identification Using Side-Effect Similarity , 2008, Science.

[50]  F. Huang,et al.  Effect of trichostatin a on viability and microRNA expression in human pancreatic cancer cell line BxPC-3. , 2008, Experimental oncology.

[51]  S. Shankar,et al.  Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. , 2008, Advances in experimental medicine and biology.

[52]  S. Kauppinen,et al.  Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection , 2010, Science.

[53]  Vera Rogiers,et al.  Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. , 2004, Current medicinal chemistry.

[54]  R. Brentjens,et al.  Islet cell tumors of the pancreas: the medical oncologist's perspective. , 2001, The Surgical clinics of North America.

[55]  Huan Yang,et al.  MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. , 2008, Cancer research.

[56]  J. Simpkins,et al.  Estrogen treatment following severe burn injury reduces brain inflammation and apoptotic signaling , 2009, Journal of Neuroinflammation.

[57]  J. Santini,et al.  MiR-129-5p is required for histone deacetylase inhibitor-induced cell death in thyroid cancer cells. , 2011, Endocrine-related cancer.