Hardness Results for Dynamic Problems by Extensions of Fredman and Saks' Chronogram Method
暂无分享,去创建一个
[1] Zvi Galil,et al. Lower bounds for data structure problems on RAMs , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[2] Monika Henzinger,et al. Lower Bounds for Fully Dynamic Connectivity Problems in Graphs , 1995, Algorithmica.
[3] Shlomo Moran. Generalized Lower Bounds Derived from Hastad's Main Lemma , 1987, Inf. Process. Lett..
[4] Andrew Chi-Chih Yao,et al. Should Tables Be Sorted? , 1981, JACM.
[5] Kim G. Larsen,et al. Formal modeling and analysis of an audio/video protocol: an industrial case study using UPPAAL , 1997, Proceedings Real-Time Systems Symposium.
[6] Miklós Ajtai,et al. A lower bound for finding predecessors in Yao's cell probe model , 1988, Comb..
[7] Peter Bro Miltersen,et al. Complexity Models for Incremental Computation , 1994, Theor. Comput. Sci..
[8] David Eppstein. Dynamic Connectivity in Digital Images , 1997, Inf. Process. Lett..
[9] Peter Bro Miltersen,et al. On data structures and asymmetric communication complexity , 1994, STOC '95.
[10] Ingo Wegener,et al. The Complexity of Symmetric Functions in Bounded-Depth Circuits , 1987, Inf. Process. Lett..
[11] Johan Håstad,et al. Almost optimal lower bounds for small depth circuits , 1986, STOC '86.
[12] Peter Bro Miltersen,et al. Dynamic Algorithms for the Dyck Languages , 1995 .
[13] Thore Husfeldt,et al. Lower Bounds for Dynamic Transitive Closure, Planar Point Location, and Parentheses Matching , 1996, SWAT.
[14] Kim G. Larsen,et al. Model Checking via Reachability Testing for Timed Automata , 1997, TACAS.
[15] B. Xiao. New bounds in cell probe model , 1992 .
[16] Ulrich Kohlenbach,et al. On the Arithmetical Content of Restricted Forms of Comprehension, Choice and General Uniform Boundedness , 1997, Ann. Pure Appl. Log..
[17] F. Frances Yao,et al. Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[18] Thore Husfeldt,et al. Hardness Results for Dynamic Problems by Extensions of Fredman and Saks’ Chronogram Method , 1997 .
[19] Faith Ellen,et al. On Searching Sorted Lists: A Near-Optimal Lower Bound , 1998, Electron. Colloquium Comput. Complex..
[20] Michael L. Fredman. Observations on the Complexity of Generating Quasi-Gray Codes , 1978, SIAM J. Comput..
[21] Thore Husfeldt. Fully Dynamic Transitive Closure in Plane Dags with one Source and one Sink , 1994 .
[22] Andrew Chi-Chih Yao. On the Complexity of Maintaining Partial Sums , 1985, SIAM J. Comput..
[23] Thore Husfeldt,et al. Lower Bounds for Dynamic Transitive Closure, Planar Point Location, and Parantheses Matching , 1996, Nord. J. Comput..
[24] Ivan Damgård,et al. Zero-Knowledge Proofs for Finite Field Arithmetic or: Can Zero-Knowledge be for Free? , 1997 .
[25] Kurt Mehlhorn,et al. Dynamic point location in general subdivisions , 1992, SODA '92.
[26] Giuseppe F. Italiano,et al. Fully Dynamic Planarity Testing in Planar Embedded Graphs (Extended Abstract) , 1993, ESA.
[27] Michael L. Fredman,et al. The Complexity of Maintaining an Array and Computing Its Partial Sums , 1982, JACM.
[28] Peter Bro Miltersen. Lower bounds for union-split-find related problems on random access machines , 1994, STOC '94.
[29] Andrew M. Pitts,et al. Higher order operational techniques in semantics , 1999 .
[30] Michael E. Saks,et al. The cell probe complexity of dynamic data structures , 1989, STOC '89.
[31] Monika Henzinger,et al. Improved Data Structures for Fully Dynamic Biconnectivity , 2000, SIAM J. Comput..
[32] Peter Bro Miltersen,et al. Searching constant width mazes captures the AC 0 hierarchy , 1997 .
[33] R. Cramer,et al. Span Programs and General Secure Multi-Party Computation , 1997 .
[34] Roberto Tamassia. On-Line Planar Graph Embedding , 1996, J. Algorithms.
[35] Roberto Tamassia,et al. Fully Dynamic Point Location in a Monotone Subdivision , 1989, SIAM J. Comput..
[36] Paul F. Dietz. Optimal Algorithms for List Indexing and Subset Rank , 1989, WADS.