Pseudo equality algebras: revision

Recently Jenei introduced a new structure called equality algebras which is inspired by ideas of BCK-algebras with meet. These algebras were generalized by Jenei and Kóródi to pseudo equality algebras which are aimed to find a connection with pseudo BCK-algebras with meet. We show that such pseudo equality algebras are an equality algebras. Therefore, we define a new type of algebras, called JK-algebras, which more precisely reflects the relation to pseudo BCK-algebras with meet in the sense of Kabziński and Wroński. We describe congruences via normal closed deductive systems, and we show that the variety of JK-algebras is subtractive, congruence distributive and congruence permutable.

[1]  Bruno Bosbach Komplementäre Halbgruppen Kongruenzen und Quotienten , 1970 .

[2]  Bruno Bosbach Komplementäre Halbgruppen. Axiomatik und Arithmetik , 1969 .

[3]  A. Ursini On subtractive varieties, I , 1994 .

[4]  George Georgescu,et al.  Pseudo-BCK Algebras: An Extension of BCK Algebras , 2001, DMTCS.

[5]  Jiří Rachůnek,et al.  A non-commutative generalization of MV-algebras , 2002 .

[6]  IorgulescuAfrodita On BCK algebras , 2008, SOCO 2008.

[7]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[8]  Afrodita Iorgulescu ON PSEUDO-BCK ALGEBRAS AND PORIMS , 2004 .

[9]  Lavinia Corina Ciungu On pseudo-equality algebras , 2014, Arch. Math. Log..

[10]  Bernard De Baets,et al.  EQ-algebras , 2009, Fuzzy Sets Syst..

[11]  Sándor Jenei,et al.  Equality Algebras , 2010, 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI).

[12]  A. Dvurečenskij,et al.  On pseudo MV-algebras , 2001, Soft Comput..

[13]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[14]  George Georgescu,et al.  Pseudo-hoops , 2005, J. Multiple Valued Log. Soft Comput..