Parametric Kalman filter for chemical transport models

A computational simplification of the Kalman filter (KF) is introduced – the parametric Kalman filter (PKF). The full covariance matrix dynamics of the KF, which describes the evolution along the analysis and forecast cycle, is replaced by the dynamics of the error variance and the diffusion tensor, which is related to the correlation length-scales. The PKF developed here has been applied to the simplified framework of advection–diffusion of a passive tracer, for its use in chemical transport model assimilation. The PKF is easy to compute and computationally cost-effective than an ensemble Kalman filter (EnKF) in this context. The validation of the method is presented for a simplified 1-D advection–diffusion dynamics.

[1]  Martin Vejmelka,et al.  Spectral diagonal ensemble Kalman filters , 2014, 1501.00219.

[2]  John C. Gille,et al.  Assimilation of satellite observations of long-lived chemical species in global chemistry transport models , 2000 .

[3]  Olivier Pannekoucke,et al.  Filtering properties of wavelets for local background‐error correlations , 2007 .

[4]  D. Dee An adaptive scheme for cycling background error variances during data assimilation , 2003 .

[5]  Olivier Pannekoucke,et al.  Modelling of local length‐scale dynamics and isotropizing deformations , 2014 .

[6]  L. Raynaud,et al.  Objective filtering of ensemble‐based background‐error variances , 2009 .

[7]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[8]  L. Berre,et al.  The Use of an Ensemble Approach to Study the Background Error Covariances in a Global NWP Model , 2006 .

[9]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[10]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[11]  Henk Eskes,et al.  Assimilation of GOME total‐ozone satellite observations in a three‐dimensional tracer‐transport model , 2003 .

[12]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[13]  Olivier Pannekoucke,et al.  Estimation of the local diffusion tensor and normalization for heterogeneous correlation modelling using a diffusion equation , 2008 .

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  Peter M. Lyster,et al.  Assimilation of Stratospheric Chemical Tracer Observations Using a Kalman Filter. Part I: Formulation , 2000 .

[16]  Richard Ménard,et al.  Assimilation of Stratospheric Chemical Tracer Observations Using a Kalman Filter. Part II: χ2-Validated Results and Analysis of Variance and Correlation Dynamics , 2000 .

[17]  Mark Buehner,et al.  Spectral and spatial localization of background‐error correlations for data assimilation , 2007 .

[18]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[19]  D. Murtagh,et al.  A study of polar ozone depletion based on sequential assimilation of satellite data from the ENVISAT/MIPAS and Odin/SMR instruments , 2006 .

[20]  S. Ricci,et al.  DATA ASSIMILATION ON A FLOOD WAVE PROPAGATION MODEL : EMULATION OF A KALMAN FILTER ALGORITHM Assimilation de données sur un modèle d'onde de crue : émulation d'un algorithme de filtre de Kalman , 2012 .

[21]  Olivier Pannekoucke,et al.  Background‐error correlation length‐scale estimates and their sampling statistics , 2008 .

[22]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[23]  R. Daley Atmospheric Data Analysis , 1991 .

[24]  Marc Bocquet,et al.  Localization and the iterative ensemble Kalman smoother , 2016 .

[25]  Olivier Pannekoucke,et al.  Sampling properties and spatial filtering of ensemble background‐error length‐scales , 2013 .

[26]  Fuqing Zhang,et al.  Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation , 2016 .

[27]  O. Pannekoucke,et al.  Modelling of Local Length-Scale Dynamics and Isotropizing Deformations: Formulation in Natural Coordinate System , 2016 .

[28]  S. Cohn,et al.  A Lagrangian trajectory filter for constituent data assimilation , 2004 .

[29]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[30]  John C. Gille,et al.  Constraining tropospheric ozone column through data assimilation , 2002 .

[31]  S. Cohn Dynamics of Short-Term Univariate Forecast Error Covariances , 1993 .

[32]  A. Weaver,et al.  Representation of correlation functions in variational assimilation using an implicit diffusion operator , 2010 .

[33]  Henk Eskes,et al.  Multi sensor reanalysis of total ozone , 2010 .

[34]  Bruno Sportisse,et al.  A review of current issues in air pollution modeling and simulation , 2007 .