Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations
暂无分享,去创建一个
In this paper we prove the local existence and uniqueness of C 1+γ solutions of the Boussinesq equations with initial data υ 0 , θ 0 ∈ C 1+γ , ω 0 , ∇θ 0 ∈ L q for 0 q 2. We also obtain a blow-up criterion for this local solutions. More precisely we show that the gradient of the passive scalar θ controls the breakdown of C 1+γ solutions of the Boussinesq equations.
[1] J. Chemin. Régularité de la trajectoire des particules d'un fluide parfait incompressible remplissant l'espace , 1992 .
[2] Dongho Chae,et al. Local existence and blow-up criterion for the Boussinesq equations , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[3] Tosio Kato,et al. Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .
[4] Andrew J. Majda,et al. Vorticity and the mathematical theory of incompressible fluid flow , 1986 .