An efficient composite heuristic for the symmetric generalized traveling salesman problem

The main purpose of this paper is to introduce a new composite heuristic for solving the generalized traveling salesman problem. The proposed heuristic is composed of three phases: the construction of an initial partial solution, the insertion of a node from each non-visited node-subset, and a solution improvement phase. We show that the heuristic performs very well on 36 TSPLIB problems which have been solved to optimality by other researchers. We also propose some simple heuristics that can be used as basic blocks to construct more efficient composite heuristics.

[1]  M. Fischetti,et al.  AN ADDITIVE APPROACH FOR THE OPTIMAL SOLUTION OF THE PRIZE-COLLECTING TRAVELLING SALESMAN PROBLEM. VEHICLE ROUTING: METHODS AND STUDIES. STUDIES IN MANAGEMENT SCIENCE AND SYSTEMS - VOLUME 16 , 1988 .

[2]  Michel Gendreau,et al.  The Covering Tour Problem , 1997, Oper. Res..

[3]  John R. Current,et al.  The Covering Salesman Problem , 1989, Transp. Sci..

[4]  Ton Volgenant,et al.  The symmetric clustered traveling salesman problem , 1985 .

[5]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[6]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[7]  James C. Bean,et al.  A Lagrangian Based Approach for the Asymmetric Generalized Traveling Salesman Problem , 1991, Oper. Res..

[8]  C. Keller Algorithms to solve the orienteering problem: A comparison , 1989 .

[9]  Ram Ramesh,et al.  An efficient four-phase heuristic for the generalized orienteering problem , 1991, Comput. Oper. Res..

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Gilbert Laporte,et al.  Some Applications of the Generalized Travelling Salesman Problem , 1996 .

[12]  James A. Chisman,et al.  The clustered traveling salesman problem , 1975, Comput. Oper. Res..

[13]  C. Keller Multiobjective Routing Through Space And Time: The Mvp And Tdvp Problems , 1985 .

[14]  Egon Balas,et al.  The prize collecting traveling salesman problem , 1989, Networks.

[15]  Michel Gendreau,et al.  HEURISTICS FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM. , 1994 .

[16]  Dennis H. Gensch,et al.  An Industrial application of the traveling salesman's subtour problem , 1978 .

[17]  Matteo Fischetti,et al.  A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem , 1997, Oper. Res..

[18]  室 章治郎 Michael R.Garey/David S.Johnson 著, "COMPUTERS AND INTRACTABILITY A guide to the Theory of NP-Completeness", FREEMAN, A5判変形判, 338+xii, \5,217, 1979 , 1980 .

[19]  Bruce L. Golden,et al.  VEHICLE ROUTING: METHODS AND STUDIES , 1988 .

[20]  B. Golden,et al.  A multifaceted heuristic for the orienteering problem , 1988 .

[21]  J. Current,et al.  The median tour and maximal covering tour problems: Formulations and heuristics , 1994 .

[22]  Roy Jonker,et al.  On Some Generalizations of the Travelling-Salesman Problem , 1987 .

[23]  Mark H. Karwan,et al.  An Optimal Algorithm for the Orienteering Tour Problem , 1992, INFORMS J. Comput..

[24]  R. Vohra,et al.  The Orienteering Problem , 1987 .

[25]  Gilbert Laporte,et al.  A Fast Composite Heuristic for the Symmetric Traveling Salesman Problem , 1996, INFORMS J. Comput..

[26]  J. Gani,et al.  Proceedings of the Fourth International Conference on Operational Research , 1972 .

[27]  G. Laporte,et al.  Generalized Travelling Salesman Problem Through n Sets Of Nodes: An Integer Programming Approach , 1983 .

[28]  Michael O. Ball,et al.  The design and analysis of heuristics , 1981, Networks.

[29]  J. C. Bean,et al.  An efficient transformation of the generalized traveling salesman problem , 1993 .

[30]  Bruce L. Golden,et al.  Two generalizations of the traveling salesman problem , 1981 .

[31]  T. Tsiligirides,et al.  Heuristic Methods Applied to Orienteering , 1984 .

[32]  G. Laporte,et al.  Optimal tour planning with specified nodes , 1984 .

[33]  Gilbert Laporte,et al.  Generalized travelling salesman problem through n sets of nodes: the asymmetrical case , 1987, Discret. Appl. Math..