High Resolution Photovoltaic Subretinal Prosthesis for Restoration of Sight

In photovoltaic subretinal prostheses, each pixel converts light into electric current to stimulate the nearby inner retinal neurons. Visual information is projected onto the implant by video goggles using pulsed near-infrared (~880 nm) light. This design avoids the use of bulky electronics and trans-scleral wiring, thereby greatly reducing the surgical complexity. Optical activation of the photovoltaic pixels allows scaling the implants to thousands of electrodes, and multiple modules can be tiled under the retina to expand the visual field.

[1]  Daniel Palanker,et al.  SiC protective coating for photovoltaic retinal prosthesis , 2016, Journal of neural engineering.

[2]  Eberhart Zrenner,et al.  Functional outcome in subretinal electronic implants depends on foveal eccentricity. , 2013, Investigative ophthalmology & visual science.

[3]  José-Alain Sahel,et al.  Importance of eye position on spatial localization in blind subjects wearing an Argus II retinal prosthesis. , 2014, Investigative ophthalmology & visual science.

[4]  A. Milam,et al.  Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[5]  Sébastien Joucla,et al.  Improved Focalization of Electrical Microstimulation Using Microelectrode Arrays: A Modeling Study , 2009, PloS one.

[6]  W. H. Dobelle,et al.  Artificial vision for the blind by electrical stimulation of the visual cortex. , 1979, Neurosurgery.

[7]  K. Mathieson,et al.  Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration. , 2015, Investigative ophthalmology & visual science.

[8]  Eberhart Zrenner,et al.  Fighting Blindness with Microelectronics , 2013, Science Translational Medicine.

[9]  Ava K. Bittner,et al.  The artificial silicon retina in retinitis pigmentosa patients (an American Ophthalmological Association thesis). , 2010, Transactions of the American Ophthalmological Society.

[10]  A. Y. Chow,et al.  Implantation of silicon chip microphotodiode arrays into the cat subretinal space , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[11]  A. Sher,et al.  Development of Animal Models of Local Retinal Degeneration. , 2015, Investigative ophthalmology & visual science.

[12]  B. Jones,et al.  Retinal remodeling during retinal degeneration. , 2005, Experimental eye research.

[13]  A. Sher,et al.  Photovoltaic restoration of sight with high visual acuity , 2015, Nature Medicine.

[14]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[15]  Christopher L Passaglia,et al.  Spatial receptive field properties of rat retinal ganglion cells , 2011, Visual Neuroscience.

[16]  B. Wilhelm,et al.  Subretinal Visual Implant Alpha IMS – Clinical trial interim report , 2015, Vision Research.

[17]  K. Mathieson,et al.  Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials , 2013, Nature Communications.

[18]  B. Jones,et al.  Neural remodeling in retinal degeneration , 2003, Progress in Retinal and Eye Research.

[19]  J. D. Weiland,et al.  Resolution of the Epiretinal Prosthesis is not Limited by Electrode Size , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[20]  K. Mathieson,et al.  Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration , 2015, Vision Research.

[21]  Alfred Stett,et al.  Subretinal electronic chips allow blind patients to read letters and combine them to words , 2010, Proceedings of the Royal Society B: Biological Sciences.

[22]  H. Lorach,et al.  Implantation of Modular Photovoltaic Subretinal Prosthesis. , 2016, Ophthalmic surgery, lasers & imaging retina.

[23]  P Bergonzo,et al.  Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation , 2011, Journal of neural engineering.

[24]  Jessy D. Dorn,et al.  Interim results from the international trial of Second Sight's visual prosthesis. , 2012, Ophthalmology.

[25]  A. Sher,et al.  Photovoltaic retinal prosthesis: implant fabrication and performance , 2012, Journal of neural engineering.

[26]  D. Palanker,et al.  Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes , 2014, Journal of neural engineering.

[27]  Joseph F Rizzo,et al.  Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. , 2006, Experimental eye research.

[28]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[29]  H. Lorach,et al.  Retinal safety of near infrared radiation in photovoltaic restoration of sight. , 2016, Biomedical optics express.

[30]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[31]  Mark S Humayun,et al.  Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. , 2012, Investigative ophthalmology & visual science.