Multiobjective Collective Decision Optimization Algorithm for Economic Emission Dispatch Problem

The collective decision optimization algorithm (CDOA) is a new stochastic population-based evolutionary algorithm which simulates the decision behavior of human. In this paper, a multiobjective collective decision optimization algorithm (MOCDOA) is first proposed to solve the environmental/economic dispatch (EED) problem. MOCDOA uses three novel learning strategies, that is, a leader-updating strategy based on the maximum distance of each solution in an external archive, a wise random perturbation strategy based on the sparse mark around a leader, and a geometric center-updating strategy based on an extreme point. The proposed three learning strategies benefit the improvement of the uniformity and the diversity of Pareto optimal solutions. Several experiments have been carried out on the IEEE 30-bus 6-unit test system and 10-unit test system to investigate the performance of MOCDOA. In terms of extreme solutions, compromise solution, and three metrics (SP, HV, and CM), MOCDOA is compared with other existing multiobjective optimization algorithms. It is demonstrated that MOCDOA can generate the well-distributed and the high-quality Pareto optimal solutions for the EED problem and has the potential to solve the multiobjective optimization problems of other power systems.

[1]  Amit Konar,et al.  A swarm intelligence approach to the synthesis of two-dimensional IIR filters , 2007, Eng. Appl. Artif. Intell..

[2]  M. A. Abido,et al.  A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch , 2003 .

[3]  Jingjing Ma,et al.  Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch , 2016, Appl. Soft Comput..

[4]  Lixiang Li,et al.  Economic dispatch in power plant based on chaotic ant swarm optimization , 2006 .

[5]  Kalyanmoy Deb,et al.  Evolutionary Multi-objective Environmental/Economic Dispatch: Stochastic Versus Deterministic Approaches , 2005, EMO.

[6]  M. Abido Environmental/economic power dispatch using multiobjective evolutionary algorithms , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[7]  Zhao Bo,et al.  Multiple objective particle swarm optimization technique for economic load dispatch , 2005 .

[8]  Leonardo Nepomuceno,et al.  Solving the Multiobjective Environmental/Economic Dispatch Problem using Weighted Sum and $$\upvarepsilon $$ε-Constraint Strategies and a Predictor-Corrector Primal-Dual Interior Point Method , 2014 .

[9]  D. B. Das,et al.  New multi-objective stochastic search technique for economic load dispatch , 1998 .

[10]  Philip Ogunbona,et al.  Economic-emission dispatch problem: A semi-definite programming approach , 2014 .

[11]  Mousumi Basu,et al.  Economic environmental dispatch using multi-objective differential evolution , 2011, Appl. Soft Comput..

[12]  Aniruddha Bhattacharya,et al.  Solution of Economic Emission Load Dispatch problems of power systems by Real Coded Chemical Reaction algorithm , 2014 .

[13]  Lixiang Li,et al.  CHAOTIC PARTICLE SWARM OPTIMIZATION FOR ECONOMIC DISPATCH CONSIDERING THE GENERATOR CONSTRAINTS , 2007 .

[14]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[15]  Zhang Cong-yu,et al.  Improved NSGA-II algorithm with circular crowded sorting , 2010 .

[16]  Dun-Wei Gong,et al.  A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch , 2012, Inf. Sci..

[17]  Mohammad Ali Abido,et al.  Multiobjective evolutionary algorithms for electric power dispatch problem , 2006, IEEE Transactions on Evolutionary Computation.

[18]  Manoj Kumar Tiwari,et al.  Multiobjective Particle Swarm Algorithm With Fuzzy Clustering for Electrical Power Dispatch , 2008, IEEE Transactions on Evolutionary Computation.

[19]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[20]  Lixiang Li,et al.  A multi-objective chaotic particle swarm optimization for environmental/economic dispatch , 2009 .

[21]  J.R. Cedeno-Maldonado,et al.  Differential evolution based economic environmental power dispatch , 2005, Proceedings of the 37th Annual North American Power Symposium, 2005..

[22]  Mostafa Modiri-Delshad,et al.  Multi-objective backtracking search algorithm for economic emission dispatch problem , 2016, Appl. Soft Comput..

[23]  S. A. Al-Baiyat,et al.  Economic load dispatch multiobjective optimization procedures using linear programming techniques , 1995 .

[24]  Ferial El-Hawary,et al.  A summary of environmental/economic dispatch algorithms , 1994 .

[25]  Masatoshi Sakawa,et al.  An Interactive Fuzzy Satisficing Method for Multiobjective Linear-Programming Problems and Its Application , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  Ponnuthurai N. Suganthan,et al.  Improved MOCLPSO algorithm for environmental/economic dispatch , 2007, 2007 IEEE Congress on Evolutionary Computation.

[27]  R. Hahn,et al.  Assessing the Influence of Power Pools on Emission Constrained Economic Dispatch , 1986, IEEE Power Engineering Review.

[28]  C. S. Chang,et al.  Security-constrained multiobjective generation dispatch using bicriterion global optimisation , 1995 .

[29]  Lingfeng Wang,et al.  Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization , 2008 .

[30]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[31]  Lingfeng Wang,et al.  Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm , 2007 .

[32]  Chao-Lung Chiang,et al.  Optimal economic emission dispatch of hydrothermal power systems , 2007 .

[33]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[34]  Ruhul A. Sarker,et al.  Adaptive Configuration of evolutionary algorithms for constrained optimization , 2013, Appl. Math. Comput..

[35]  K. S. Swarup,et al.  Solving multi-objective optimal power flow using differential evolution , 2008 .

[36]  Kai Ding,et al.  Collective decision optimization algorithm: A new heuristic optimization method , 2017, Neurocomputing.

[37]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[38]  Malabika Basu,et al.  Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II , 2008 .

[39]  Yaonan Wang,et al.  Environmental/economic power dispatch problem using multi-objective differential evolution algorithm , 2010 .

[40]  G. P. Granelli,et al.  Emission constrained dynamic dispatch , 1992 .