Recalage hétérogène de nuages de points 3D. Application à l'imagerie sous-marine

Le recalage de deux nuages de points 3D est une etape essentielle dans de nombreuses applications. L’objectif de notre travail est d’estimer une transformation isometrique permettant de fusionner au mieux deux ensembles heterogenes de points issus de deux capteurs differents. Dans cet article, nous presenterons une methode de recalage 3D - 3D originale qui se distingue par la nature de la signature extraite en chaque point et par le critere de similarite utilise pour mesurer le degre de ressemblance. Le descripteur que nous pr oposons est invariant a la rotation et a la translation et permet egalement de s’affranchir du probleme de la multi - resolution relatif aux donnees heterogenes. Dans le but de valider notre approche, nous l’avons teste sur des donnees synthetiques et nous l’avons applique sur des donnees reelles heterogenes.

[1]  Eric Wahl,et al.  Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[2]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[3]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  M. Hurtós,et al.  Integration of optical and acoustic sensors for D underwater scene reconstruction. , 2009 .

[5]  In-So Kweon,et al.  Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction , 2014, Sensors.

[6]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[7]  Andrea Fusiello,et al.  Calibration of an Optical-Acoustic Sensor , 2000 .

[8]  Michael Goesele,et al.  Scene Reconstruction and Visualization From Community Photo Collections , 2010, Proceedings of the IEEE.

[9]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[10]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[11]  Shahriar Negahdaripour,et al.  Opti-Acoustic Stereo Imaging, System Calibration and 3-D Reconstruction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Chin Seng Chua,et al.  Point Signatures: A New Representation for 3D Object Recognition , 1997, International Journal of Computer Vision.

[13]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[14]  Katsuhiko Sakaue,et al.  Registration and integration of multiple range images for 3-D model construction , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[15]  Luigi di Stefano,et al.  On the repeatability of the local reference frame for partial shape matching , 2011, 2011 International Conference on Computer Vision.

[16]  Sebastian Weik,et al.  Registration of 3-D partial surface models using luminance and depth information , 1997, Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134).

[17]  O. Pizarro,et al.  Large Area 3-D Reconstructions From Underwater Optical Surveys , 2009, IEEE Journal of Oceanic Engineering.

[18]  L. Whitcomb,et al.  Advances in fusion of high resolution underwater optical and acoustic data , 2000, Proceedings of the 2000 International Symposium on Underwater Technology (Cat. No.00EX418).

[19]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[20]  Manolis I. A. Lourakis,et al.  SBA: A software package for generic sparse bundle adjustment , 2009, TOMS.

[21]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[22]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[23]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[26]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Andrea Fusiello,et al.  Augmented scene modeling and visualization by optical and acoustic sensor integration , 2004, IEEE Transactions on Visualization and Computer Graphics.