Managing Probabilistic Data with MystiQ : The Can-Do , the Could-Do , and the Can ’ t-Do ?

MystiQ is a system that allows users to define a probabilistic database, then to evaluate SQL queries over this database. MystiQ is a middleware: the data itself is stored in a standard relational database system, and MystiQ is providing the probabilistic semantics. The advantage of a middleware over a re-implementation from scratch is that it can leverage the infrastructure of an existing database engine, e.g. indexes, query evaluation, query optimization, etc. Furthermore, MystiQ attempts to perform most of the probabilistic inference inside the relational database engine. MystiQ is currently available from mystiq.cs.washington.edu .

[1]  Sebastian Maneth,et al.  Efficient Memory Representation of XML Documents , 2005, DBPL.

[2]  Sunil Prabhakar,et al.  Managing Uncertainty in Sensor Databases , 2003 .

[3]  Prithviraj Sen,et al.  Representing and Querying Correlated Tuples in Probabilistic Databases , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[4]  Christopher Ré,et al.  Materialized Views in Probabilistic Databases for Information Exchange and Query Optimization , 2007, VLDB.

[5]  Dan Suciu,et al.  The dichotomy of conjunctive queries on probabilistic structures , 2006, PODS.

[6]  Dan Olteanu,et al.  $${10^{(10^{6})}}$$ worlds and beyond: efficient representation and processing of incomplete information , 2006, 2007 IEEE 23rd International Conference on Data Engineering.

[7]  Jennifer Widom,et al.  Trio: A System for Integrated Management of Data, Accuracy, and Lineage , 2004, CIDR.

[8]  Dan Olteanu,et al.  10106 Worlds and Beyond: Efficient Representation and Processing of Incomplete Information , 2007, ICDE.

[9]  Dan Olteanu,et al.  MayBMS: Managing Incomplete Information with Probabilistic World-Set Decompositions , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[10]  Jennifer Widom,et al.  Working Models for Uncertain Data , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[11]  Richard Fikes,et al.  Design and Implementation of the CALO Query Manager , 2006, AAAI.

[12]  Christopher Ré,et al.  Approximate lineage for probabilistic databases , 2008, Proc. VLDB Endow..

[13]  Matt Brown,et al.  Invited talk , 2007 .

[14]  Sunil Prabhakar,et al.  Managing uncertainty in sensor database , 2003, SGMD.

[15]  Christopher Ré,et al.  MYSTIQ: a system for finding more answers by using probabilities , 2005, SIGMOD '05.

[16]  Christopher Ré,et al.  Query Evaluation on Probabilistic Databases , 2006, IEEE Data Eng. Bull..

[17]  Jennifer Widom,et al.  An Introduction to ULDBs and the Trio System , 2006, IEEE Data Eng. Bull..

[18]  Christopher Ré,et al.  Efficient Top-k Query Evaluation on Probabilistic Data , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[19]  Laks V. S. Lakshmanan,et al.  ProbView: a flexible probabilistic database system , 1997, TODS.

[20]  Hector Garcia-Molina,et al.  The Management of Probabilistic Data , 1992, IEEE Trans. Knowl. Data Eng..

[21]  T. S. Jayram,et al.  Efficient aggregation algorithms for probabilistic data , 2007, SODA '07.

[22]  Jennifer Widom,et al.  ULDBs: databases with uncertainty and lineage , 2006, VLDB.

[23]  Peter J. Haas,et al.  MCDB: a monte carlo approach to managing uncertain data , 2008, SIGMOD Conference.

[24]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[25]  Dan Suciu,et al.  Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.

[26]  Dan Olteanu,et al.  Conditioning probabilistic databases , 2008, Proc. VLDB Endow..

[27]  Dan Suciu,et al.  Management of probabilistic data: foundations and challenges , 2007, PODS '07.

[28]  Dan Suciu,et al.  Query evaluation with soft-key constraints , 2008, PODS.

[29]  Christopher Ré,et al.  Implementing NOT EXISTS Predicates over a Probabilistic Database , 2008, QDB/MUD.

[30]  Christoph Koch,et al.  World-set decompositions: Expressiveness and efficient algorithms , 2007, Theor. Comput. Sci..

[31]  Helmut Seidl,et al.  Exact XML Type Checking in Polynomial Time , 2007, ICDT.