Fusion of biometric systems using Boolean combination: an application to iris-based authentication

To improve accuracy and reliability, Boolean combination (BC) can efficiently integrate the responses of multiple biometric systems in the ROC space. However, BC techniques assume that recognition systems are conditionally-independent and that their ROC curves are convex. These assumptions are rarely valid in practice, where systems face complex environments, and are designed using limited enrollment data. In recent research, the authors have introduced an Iterative BC (IBC) technique that applies all Boolean functions iteratively, without prior assumptions. In this paper, IBC is considered for fusion of different commercial biometric systems at the decision level. Performance of IBC is assessed for biometric authentication applications in which the operational response of unimodal iris-base systems are combined. Experiments performed with four different commercial systems using anonymised data collected by the Canada Border Services Agency indicate that IBC fusion with interpolation can signicantly outperform related BC techniques and individual systems.

[1]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[2]  Samy Bengio,et al.  Biometric Person Authentication Is a Multiple Classifier Problem , 2007, MCS.

[3]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[4]  Robert Sabourin,et al.  Combining Hidden Markov Models for Improved Anomaly Detection , 2009, 2009 IEEE International Conference on Communications.

[5]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[6]  Lambert Schomaker,et al.  Variants of the Borda count method for combining ranked classifier hypotheses , 2000 .

[7]  Tom Fawcett,et al.  Robust Classification for Imprecise Environments , 2000, Machine Learning.

[8]  Abbes Amira,et al.  Structural hidden Markov models for biometrics: Fusion of face and fingerprint , 2008, Pattern Recognit..

[9]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Lucila Ohno-Machado,et al.  Combining Classifiers Using Their Receiver Operating Characteristics and Maximum Likelihood Estimation , 2005, MICCAI.

[11]  Changyu Shen On the Principles of Believe the Positive and Believe the Negative for Diagnosis Using Two Continuous Tests , 2021, Journal of Data Science.

[12]  Bogdan Gabrys,et al.  Classifier selection for majority voting , 2005, Inf. Fusion.

[13]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[15]  Josef Kittler,et al.  Quality dependent fusion of intramodal and multimodal biometric experts , 2007, SPIE Defense + Commercial Sensing.

[16]  Sun-Yuan Kung,et al.  Biometric Authentication: A Machine Learning Approach , 2004 .

[17]  Steven N. Thorsen,et al.  A Boolean Algebra of receiver operating characteristic curves , 2007, 2007 10th International Conference on Information Fusion.

[18]  Sharath Pankanti,et al.  Biometrics: a tool for information security , 2006, IEEE Transactions on Information Forensics and Security.

[19]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  S D Walter,et al.  The partial area under the summary ROC curve , 2005, Statistics in medicine.

[21]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[22]  Lawrence O. Hall,et al.  A New Ensemble Diversity Measure Applied to Thinning Ensembles , 2003, Multiple Classifier Systems.

[23]  Xuelong Li,et al.  Multimodal biometrics using geometry preserving projections , 2008, Pattern Recognit..

[24]  Xin Yao,et al.  Diversity creation methods: a survey and categorisation , 2004, Inf. Fusion.

[25]  Dmitry O. Gorodnichy,et al.  Exploring the upper bound performance limit of iris biometrics using score calibration and fusion , 2011, 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM).

[26]  Mahesan Niranjan,et al.  Realisable Classifiers: Improving Operating Performance on Variable Cost Problems , 1998, BMVC.

[27]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[28]  Anil K. Jain,et al.  Likelihood Ratio-Based Biometric Score Fusion , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Robert Sabourin,et al.  Iterative Boolean combination of classifiers in the ROC space: An application to anomaly detection with HMMs , 2010, Pattern Recognit..

[30]  Ramanarayanan Viswanathan,et al.  Optimal distributed decision fusion , 1989 .

[31]  Gérard Chollet,et al.  Multi-modal identity verification using expert fusion , 2000, Inf. Fusion.

[32]  Patrick J. Flynn,et al.  Image understanding for iris biometrics: A survey , 2008, Comput. Vis. Image Underst..

[33]  Alvaro A. Cárdenas,et al.  Optimal ROC Curve for a Combination of Classifiers , 2007, NIPS.

[34]  Elham Tabassi,et al.  Image Specific Error Rate: A Biometric Performance Metric , 2010, 2010 20th International Conference on Pattern Recognition.

[35]  Luiz Eduardo Soares de Oliveira,et al.  Combining Classifiers in the ROC-space for Off-line Signature Verification , 2008, J. Univers. Comput. Sci..

[36]  Ching Y. Suen,et al.  A class-modular feedforward neural network for handwriting recognition , 2002, Pattern Recognit..

[37]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[38]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[39]  B. Craig,et al.  Estimating disease prevalence in the absence of a gold standard , 2002, Statistics in medicine.

[40]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[41]  Josef Kittler,et al.  Fixed and trained combiners for fusion of imbalanced pattern classifiers , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[42]  Venu Govindaraju,et al.  Review of Classifier Combination Methods , 2008, Machine Learning in Document Analysis and Recognition.

[43]  Dmitry O. Gorodnichy,et al.  Multi-order biometric score analysis framework and its application to designing and evaluating biometric systems for access and border control , 2011, 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM).

[44]  John Daugman,et al.  Biometric decision landscapes , 2000 .

[45]  Julian Fiérrez,et al.  Adapted user-dependent multimodal biometric authentication exploiting general information , 2005, Pattern Recognit. Lett..

[46]  Raymond N. J. Veldhuis,et al.  Threshold-optimized decision-level fusion and its application to biometrics , 2009, Pattern Recognit..

[47]  Luiz Eduardo Soares de Oliveira,et al.  Combining different biometric traits with one-class classification , 2009, Signal Process..

[48]  Anil K. Jain,et al.  Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.