Target-Constrained Interference-Minimized Band Selection for Hyperspectral Target Detection

[1]  Jun Li,et al.  Spectral–Spatial Weighted Sparse Regression for Hyperspectral Image Unmixing , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Qian Du,et al.  Ant colony optimization for supervised and unsupervised hyperspectral band selection , 2013, 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[3]  Qian Du,et al.  A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[4]  Jing Wang,et al.  Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Haoyang Yu,et al.  Hyperspectral Image Classification Based on Adjacent Constraint Representation , 2020 .

[6]  Xiangtao Zheng,et al.  Discovering Diverse Subset for Unsupervised Hyperspectral Band Selection , 2017, IEEE Transactions on Image Processing.

[7]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[8]  Chein-I Chang Real-Time Recursive Hyperspectral Sample and Band Processing , 2017 .

[9]  Luyan Ji,et al.  Band selection for target detection in hyperspectral imagery using sparse CEM , 2014 .

[10]  Chein-I Chang,et al.  Multiparameter Receiver Operating Characteristic Analysis for Signal Detection and Classification , 2010, IEEE Sensors Journal.

[11]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[13]  Chein-I Chang,et al.  Class Signature-Constrained Background- Suppressed Approach to Band Selection for Classification of Hyperspectral Images , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Meiping Song,et al.  Constrained-Target Band Selection for Multiple-Target Detection , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[15]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[16]  Chein-I Chang,et al.  Constrained band selection for hyperspectral imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Robert I. Damper,et al.  Band Selection for Hyperspectral Image Classification Using Mutual Information , 2006, IEEE Geoscience and Remote Sensing Letters.

[18]  Yang-Lang Chang,et al.  Band selection for hyperspectral images based on impurity function , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Maoguo Gong,et al.  Unsupervised Hyperspectral Band Selection by Fuzzy Clustering With Particle Swarm Optimization , 2017, IEEE Geoscience and Remote Sensing Letters.

[20]  K. C. Ho,et al.  Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing , 2014, IEEE Signal Processing Magazine.

[21]  Qian Du,et al.  An Efficient Method for Supervised Hyperspectral Band Selection , 2011, IEEE Geoscience and Remote Sensing Letters.

[22]  Licheng Jiao,et al.  Hyperspectral Band Selection Based on Trivariate Mutual Information and Clonal Selection , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Qian Du,et al.  Particle swarm optimization-based band selection for hyperspectral target detection , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[24]  Maoguo Gong,et al.  Unsupervised Band Selection Based on Evolutionary Multiobjective Optimization for Hyperspectral Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[25]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[26]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[27]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[28]  Chein-I Chang,et al.  Hyperspectral Data Processing: Algorithm Design and Analysis , 2013 .

[29]  Meiping Song,et al.  3-D Receiver Operating Characteristic Analysis for Hyperspectral Image Classification , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Antonio J. Plaza,et al.  A suite of parallel algorithms for efficient band selection from hyperspectral images , 2018, Journal of Real-Time Image Processing.

[31]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[32]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[33]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[34]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[35]  Chein-I Chang,et al.  Statistical Detection Theory Approach to Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[36]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[37]  Qian Du,et al.  Hyperspectral Band Selection Using Improved Firefly Algorithm , 2016, IEEE Geoscience and Remote Sensing Letters.

[38]  Chein-I Chang,et al.  Target-constrained interference-minimized approach to subpixel target detection for hyperspectral images , 2000 .

[39]  Xiaorun Li,et al.  Band Priority Index: A Feature Selection Framework for Hyperspectral Imagery , 2018, Remote. Sens..

[40]  Kezhu Tan,et al.  Stability analysis of hyperspectral band selection algorithms based on neighborhood rough set theory for classification , 2017 .

[41]  Chein-I. Chang,et al.  An ROC analysis for subpixel detection , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[42]  Qi Wang,et al.  Optimal Clustering Framework for Hyperspectral Band Selection , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Yongchao Zhao,et al.  Joint Skewness and Its Application in Unsupervised Band Selection for Small Target Detection , 2015, Scientific reports.

[44]  Chein-I Chang,et al.  Band Subset Selection for Anomaly Detection in Hyperspectral Imagery , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[46]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[48]  Qi Wang,et al.  Dual-Clustering-Based Hyperspectral Band Selection by Contextual Analysis , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Qian Du,et al.  A signal-decomposed and interference-annihilated approach to hyperspectral target detection , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Qingquan Li,et al.  A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection , 2016, IEEE Transactions on Geoscience and Remote Sensing.