Lateral prefrontal cortex: architectonic and functional organization

A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral–caudal axis and a dorsal–ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal–ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information.

[1]  B. Lewis,et al.  II. The cortical lamination of the motor area of the brain , 1878, Proceedings of the Royal Society of London.

[2]  B. Lewis,et al.  ON THE COMPARATIVE STRUCTURE OF THE CORTEX CEREBRI. , 1878 .

[3]  W. Bevan Lewis,et al.  III. Researches on the comparative structure of the cortex cerebri , 1880, Philosophical Transactions of the Royal Society of London.

[4]  Smith Ge,et al.  A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907 .

[5]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[6]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[7]  J. Chason The Isocortex of Man , 1952 .

[8]  M. A. Macconaill Die Architektonik des menschlichen Stirnhirns , 1963 .

[9]  F. Duffy,et al.  Somatosensory System: Organizational Hierarchy from Single Units in Monkey Area 5 , 1971, Science.

[10]  B. Milner,et al.  Disorders of learning and memory after temporal lobe lesions in man. , 1972, Clinical neurosurgery.

[11]  H. Sakata,et al.  Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. , 1973, Brain research.

[12]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[13]  J. Fuster Prefrontal Cortex , 2018 .

[14]  Thomas J. Boll,et al.  Handbook of clinical neuropsychology , 1981 .

[15]  O. Andy The prefrontal cortex: Anatomy, physiology and neuropsychology of the frontal lobe , 1981 .

[16]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[17]  M. Petrides Motor conditional associative-learning after selective prefrontal lesions in the monkey , 1982, Behavioural Brain Research.

[18]  M. Mishkin A memory system in the monkey. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  R. Passingham,et al.  The role of premotor and parietal cortex in the direction of action , 1982, Brain Research.

[20]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[21]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[22]  M. Petrides Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey , 1985, Behavioural Brain Research.

[23]  G. Rizzolatti,et al.  Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey , 1985, Behavioural Brain Research.

[24]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[25]  Mortimer Mishkin,et al.  Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys , 1986, Behavioural Brain Research.

[26]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[27]  G. F. Tremblay,et al.  The Prefrontal Cortex , 1989, Neurology.

[28]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[29]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[30]  G. B. Stanton,et al.  Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys , 1989, The Journal of comparative neurology.

[31]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[32]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[33]  M Petrides,et al.  Monitoring of selections of visual stimuli and the primate frontal cortex , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[35]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[36]  J. Fuster Frontal lobes , 1993, Current Opinion in Neurobiology.

[37]  RP Dum,et al.  Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  M. Petrides Comparative architectonic analysis of the human and the macaque frontal cortex , 1994 .

[39]  F. Lacquaniti,et al.  Representing spatial information for limb movement: role of area 5 in the monkey. , 1995, Cerebral cortex.

[40]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[41]  Alan C. Evans,et al.  Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  T Shallice,et al.  The domain of supervisory processes and temporal organization of behaviour. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  T. Robbins Dissociating executive functions of the prefrontal cortex. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[45]  M. Petrides,et al.  Specialized systems for the processing of mnemonic information within the primate frontal cortex. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  A. Owen The Functional Organization of Working Memory Processes Within Human Lateral Frontal Cortex: The Contribution of Functional Neuroimaging , 1997, The European journal of neuroscience.

[47]  Tim Shallice,et al.  The domain of supervisory processes and the temporal organisation of behaviour , 1998 .

[48]  M Petrides,et al.  Architecture and connections of retrosplenial area 30 in the rhesus monkey (macaca mulatta). , 1999, The European journal of neuroscience.

[49]  J. Desmond,et al.  Functional Specialization for Semantic and Phonological Processing in the Left Inferior Prefrontal Cortex , 1999, NeuroImage.

[50]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[51]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[52]  John Q. Trojanowski,et al.  dorsolateral prefrontal cortex , 1999 .

[53]  D. Pandya,et al.  Fiber system linking the mid‐dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey , 1999, The Journal of comparative neurology.

[54]  M. Petrides Dissociable Roles of Mid-Dorsolateral Prefrontal and Anterior Inferotemporal Cortex in Visual Working Memory , 2000, The Journal of Neuroscience.

[55]  J. Duncan,et al.  Common regions of the human frontal lobe recruited by diverse cognitive demands , 2000, Trends in Neurosciences.

[56]  B. Postle,et al.  Evaluating models of the topographical organization of working memory function in frontal cortex with event-related fMRI , 2000, Psychobiology.

[57]  Michael Petrides,et al.  6 – Mapping Prefrontal Cortical Systems for the Control of Cognition , 2000 .

[58]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[59]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[60]  M. Petrides,et al.  Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[62]  Michael Petrides,et al.  The mid‐ventrolateral prefrontal cortex: insights into its role in memory retrieval , 2003, The European journal of neuroscience.

[63]  M. Petrides CHAPTER 25 – The Frontal Cortex , 2004 .

[64]  G. E. Smith A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907, Journal of anatomy and physiology.