Bayesian prediction based on a class of shrinkage priors for location-scale models
暂无分享,去创建一个
[1] A. Barron,et al. Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .
[2] H. Jeffreys,et al. Theory of probability , 1896 .
[3] R. Fisher. Two New Properties of Mathematical Likelihood , 1934 .
[4] Seymour Geisser,et al. 8. Predictive Inference: An Introduction , 1995 .
[5] J. Zidek. A representation of Bayes invariant procedures in terms of Haar measure , 1969 .
[6] Christian P. Robert,et al. The Bayesian choice , 1994 .
[7] Shun-ichi Amari,et al. Differential-geometrical methods in statistics , 1985 .
[8] A. Barron,et al. Exact minimax strategies for predictive density estimation, data compression and model selection , 2002, Proceedings IEEE International Symposium on Information Theory,.
[9] Fumiyasu Komaki. Bayesian Predictive Distribution with Right Invariant Priors , 2002 .
[10] J. Hartigan. The maximum likelihood prior , 1998 .
[11] E. Davies,et al. Heat Kernels and spectral theory: References , 1989 .
[12] John Aitchison,et al. Statistical Prediction Analysis , 1975 .
[13] F. Komaki. On asymptotic properties of predictive distributions , 1996 .
[14] J. Neyman,et al. Consistent Estimates Based on Partially Consistent Observations , 1948 .
[15] Fumiyasu Komaki,et al. Shrinkage priors for Bayesian prediction , 2006, math/0607021.
[16] J. Aitchison. Goodness of prediction fit , 1975 .
[17] I. R. Dunsmore,et al. Statistical Prediction Analysis: Diagnosis , 1975 .
[18] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[19] S. Helgason. Groups and geometric analysis , 1984 .