Bayesian prediction based on a class of shrinkage priors for location-scale models

A class of shrinkage priors for multivariate location-scale models is introduced. We consider Bayesian predictive densities for location-scale models and evaluate performance of them using the Kullback–Leibler divergence. We show that Bayesian predictive densities based on priors in the introduced class asymptotically dominate the best invariant predictive density.

[1]  A. Barron,et al.  Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .

[2]  H. Jeffreys,et al.  Theory of probability , 1896 .

[3]  R. Fisher Two New Properties of Mathematical Likelihood , 1934 .

[4]  Seymour Geisser,et al.  8. Predictive Inference: An Introduction , 1995 .

[5]  J. Zidek A representation of Bayes invariant procedures in terms of Haar measure , 1969 .

[6]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[7]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[8]  A. Barron,et al.  Exact minimax strategies for predictive density estimation, data compression and model selection , 2002, Proceedings IEEE International Symposium on Information Theory,.

[9]  Fumiyasu Komaki Bayesian Predictive Distribution with Right Invariant Priors , 2002 .

[10]  J. Hartigan The maximum likelihood prior , 1998 .

[11]  E. Davies,et al.  Heat Kernels and spectral theory: References , 1989 .

[12]  John Aitchison,et al.  Statistical Prediction Analysis , 1975 .

[13]  F. Komaki On asymptotic properties of predictive distributions , 1996 .

[14]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[15]  Fumiyasu Komaki,et al.  Shrinkage priors for Bayesian prediction , 2006, math/0607021.

[16]  J. Aitchison Goodness of prediction fit , 1975 .

[17]  I. R. Dunsmore,et al.  Statistical Prediction Analysis: Diagnosis , 1975 .

[18]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[19]  S. Helgason Groups and geometric analysis , 1984 .