PSO with Dynamic Adaptation of Parameters for Optimization in Neural Networks with Interval Type-2 Fuzzy Numbers Weights

A dynamic adjustment of parameters for the particle swarm optimization (PSO) utilizing an interval type-2 fuzzy inference system is proposed in this work. A fuzzy neural network with interval type-2 fuzzy number weights using S-norm and T-norm is optimized with the proposed method. A dynamic adjustment of the PSO allows the algorithm to behave better in the search for optimal results because the dynamic adjustment provides good synchrony between the exploration and exploitation of the algorithm. Results of experiments and a comparison between traditional neural networks and the fuzzy neural networks with interval type-2 fuzzy numbers weights using T-norms and S-norms are given to prove the performance of the proposed approach. For testing the performance of the proposed approach, some cases of time series prediction are applied, including the stock exchanges of Germany, Mexican, Dow-Jones, London, Nasdaq, Shanghai, and Taiwan.

[1]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[2]  Luciano Stefanini,et al.  General approximation of fuzzy numbers by F-transform , 2016, Fuzzy Sets Syst..

[3]  Oscar Castillo,et al.  A review on the design and optimization of interval type-2 fuzzy controllers , 2012, Appl. Soft Comput..

[4]  Bernard Widrow,et al.  Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[5]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[6]  Bo Wang,et al.  A new kind of fuzzy particle swarm optimization FUZZY/spl I.bar/PSO algorithm , 2006, 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics.

[7]  S. Weber A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms , 1983 .

[8]  Cuntai Guan,et al.  eT2FIS: An Evolving Type-2 Neural Fuzzy Inference System , 2013, Inf. Sci..

[9]  Yurilev Chalco-Cano,et al.  Distance measures for Interval Type-2 fuzzy numbers , 2015, Discret. Appl. Math..

[10]  Oscar Castillo,et al.  A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation , 2014, Expert Syst. Appl..

[11]  B. Asady Trapezoidal Approximation of a Fuzzy Number Preserving the Expected Interval and Including the Core , 2013 .

[12]  Wei-Chiang Hong,et al.  Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model , 2018, Applied Energy.

[13]  Pradipta Kishore Dash,et al.  Prediction of Financial Time Series Data using Hybrid Evolutionary Legendre Neural Network: Evolutionary LENN , 2016, Int. J. Appl. Evol. Comput..

[14]  Haralambos Sarimveis,et al.  A new algorithm for online structure and parameter adaptation of RBF networks , 2003, Neural Networks.

[15]  T. Feuring,et al.  Learning in fuzzy neural networks , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[16]  Oscar Castillo,et al.  Comparison of T-Norms and S-Norms for Interval Type-2 Fuzzy Numbers in Weight Adjustment for Neural Networks , 2017, Inf..

[17]  Oscar Castillo,et al.  A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot , 2015, Appl. Soft Comput..

[18]  Zichen Zhang,et al.  A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting , 2018 .

[19]  T. Chu,et al.  Ranking fuzzy numbers with an area between the centroid point and original point , 2002 .

[20]  Oscar Castillo,et al.  Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm , 2019, Inf. Sci..

[21]  Lale Özbakır,et al.  Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem , 2007 .

[22]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[23]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[24]  Min Han,et al.  Online sequential extreme learning machine with kernels for nonstationary time series prediction , 2014, Neurocomputing.

[25]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[26]  Oscar Montiel,et al.  Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic , 2007, Inf. Sci..

[27]  James Dunyak,et al.  Fuzzy regression by fuzzy number neural networks , 2000, Fuzzy Sets Syst..

[28]  Franco Molinari,et al.  A new criterion of choice between generalized triangular fuzzy numbers , 2016, Fuzzy Sets Syst..

[29]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[30]  Oscar Castillo,et al.  Interval type-2 fuzzy weight adjustment for backpropagation neural networks with application in time series prediction , 2014, Inf. Sci..

[31]  Jerry M. Mendel,et al.  On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems , 2011, IEEE Transactions on Fuzzy Systems.

[32]  Hui Li,et al.  Evolutionary artificial neural networks: a review , 2011, Artificial Intelligence Review.

[33]  Dexue Zhang,et al.  A representation of fuzzy numbers , 2016, Fuzzy Sets Syst..

[34]  Fevrier Valdez,et al.  Fuzzy Dynamic Parameter Adaptation in ACO and PSO for Designing Fuzzy Controllers: The Cases of Water Level and Temperature Control , 2018, Adv. Fuzzy Syst..

[35]  Akira Ichikawa,et al.  Fuzzified neural network based on fuzzy number operations , 2002, Fuzzy Sets Syst..

[36]  Renato A. Krohling,et al.  Time Series Prediction Using Restricted Boltzmann Machines and Backpropagation , 2015, ITQM.

[37]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[38]  Oscar Castillo,et al.  Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation , 2016, Appl. Soft Comput..

[39]  Saeed Panahian Fard,et al.  Interval type-2 fuzzy neural networks version of the Stone-Weierstrass theorem , 2011, Neurocomputing.

[40]  Dongrui Wu,et al.  Interval Type-2 Fuzzy PI Controllers: Why They are More Robust , 2010, 2010 IEEE International Conference on Granular Computing.

[41]  Wei Wu,et al.  A Modified Learning Algorithm for Interval Perceptrons with Interval Weights , 2014, Neural Processing Letters.

[42]  Ingoo Han,et al.  Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index , 2000 .

[43]  M. A. H. Akhand,et al.  Optimization of interval type-2 fuzzy logic controller using quantum genetic algorithms , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[44]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[45]  Oscar Castillo,et al.  An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms , 2011, Appl. Soft Comput..

[46]  José L. Verdegay,et al.  A decision personal index of fuzzy numbers based on neural networks , 1995 .

[47]  Oscar Castillo,et al.  Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic , 2013, Expert Syst. Appl..

[48]  James Dunyak,et al.  Fuzzy number neural networks , 1999, Fuzzy Sets Syst..

[49]  Chunshien Li,et al.  Adaptive fuzzy approach to function approximation with PSO and RLSE , 2011, Expert Syst. Appl..

[50]  Oscar Castillo,et al.  Generalized type-2 fuzzy weight adjustment for backpropagation neural networks in time series prediction , 2015, Inf. Sci..

[51]  C. Quek,et al.  Author ' s personal copy eT 2 FIS : An Evolving Type-2 Neural Fuzzy Inference System , 2012 .

[52]  Mohammad Hossein Fazel Zarandi,et al.  A new indirect approach to the type-2 fuzzy systems modeling and design , 2013, Inf. Sci..

[53]  Zafer Bingul,et al.  A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control , 2011, Expert Syst. Appl..

[54]  T. Niknam,et al.  A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration , 2012 .

[55]  Qiang Liu,et al.  Financial time series prediction using ℓ2, 1RF-ELM , 2018, Neurocomputing.

[56]  Kyoung-jae Kim,et al.  Financial time series forecasting using support vector machines , 2003, Neurocomputing.

[57]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[58]  S. Muthukaruppan,et al.  A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease , 2012, Expert Syst. Appl..

[59]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[60]  J. A. Chen,et al.  A decision support system for order selection in electronic commerce based on fuzzy neural network supported by real-coded genetic algorithm , 2004, Expert Syst. Appl..

[61]  Jerry M. Mendel,et al.  Operations on type-2 fuzzy sets , 2001, Fuzzy Sets Syst..

[62]  Hisao Ishibuchi,et al.  Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules , 2001, Fuzzy Sets Syst..

[63]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[64]  Jiahai Wang,et al.  Financial time series prediction using a dendritic neuron model , 2016, Knowl. Based Syst..

[65]  Ajith Abraham,et al.  Fuzzy adaptive turbulent particle swarm optimization , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[66]  Jerry M. Mendel,et al.  On the robustness of Type-1 and Interval Type-2 fuzzy logic systems in modeling , 2011, Inf. Sci..

[67]  Oscar Castillo,et al.  Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic , 2016, Soft Comput..