Reversible switching of interfacial interactions

The key to assembling and manipulating materials ranging in size from molecules to microns involves controlling how the materials interact with each other or with patterned substrates. The focus of this review involves recent work in which researchers are learning how to use materials such as self-assembled monolayers (SAMS) to reversibly program interfacial interactions using external stimuli including heat, light, and electric fields. Using such stimuli, it has been shown that intermolecular and surface forces including electrical double layer interactions, hydration forces, π-stacking interactions, and hydrophobic/hydrophilic behavior can be switched back and forth between discrete states. Such switching allows surfaces to be programmed to grab or release generic classes of materials or specific objects based on programmed molecular recognition. This review highlights strategies for developing and characterizing responsive interfaces, shows how such surfaces have been exploited in microfluidic systems, and explores the promise of switchable materials for creating responsive and adaptable materials in three dimensions.

[1]  George M. Whitesides,et al.  Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption , 1998 .

[2]  Allan S. Hoffman,et al.  Environmentally Sensitive Polymers and Hydrogels , 1991 .

[3]  B Mattiasson,et al.  'Smart' polymers and what they could do in biotechnology and medicine. , 1999, Trends in biotechnology.

[4]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[5]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[6]  Oleg Gang,et al.  DNA-based approach for interparticle interaction control. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  K. Woodhouse,et al.  Substrate-facilitated assembly of elastin-like peptides: studies by variable-temperature in situ atomic force microscopy. , 2002, Journal of the American Chemical Society.

[8]  R. Pelton,et al.  Temperature-Dependent Contact Angles of Water on Poly(N-isopropylacrylamide) Gels , 1995 .

[9]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[10]  Hsian-Rong Tseng,et al.  An operational supramolecular nanovalve. , 2004, Journal of the American Chemical Society.

[11]  A. Müller,et al.  Nanoblossoms: light-induced conformational changes of cationic polyelectrolyte stars in the presence of multivalent counterions. , 2007, Nano letters.

[12]  Chi Wu,et al.  Thermodynamically Stable Globule State of a Single Poly(N-isopropylacrylamide) Chain in Water , 1995 .

[13]  C. Branden,et al.  Introduction to protein structure , 1991 .

[14]  H. Motschmann,et al.  Controlling Microdroplet Formation by Light , 1998 .

[15]  G. Whitesides,et al.  Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces: Synthesis Using the "Capillary Bond" , 1999 .

[16]  George M. Whitesides,et al.  Active control of wetting using applied electrical potentials and self-assembled monolayers , 1995 .

[17]  R. W. O'Brien,et al.  The electroacoustic equations for a colloidal suspension , 1990, Journal of Fluid Mechanics.

[18]  J. Fraser Stoddart,et al.  SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .

[19]  Xiaobin Ding,et al.  Adsorption/desorption of protein on magnetic particles covered by thermosensitive polymers , 2000 .

[20]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[21]  R. Pelton,et al.  Temperature-sensitive aqueous microgels. , 2000, Advances in colloid and interface science.

[22]  N. Ishida,et al.  Optical observation of gas bridging between hydrophobic surfaces in water. , 2002, Journal of colloid and interface science.

[23]  J. Israelachvili,et al.  Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm , 1978 .

[24]  Ronald P. Manginell,et al.  Programmed Adsorption and Release of Proteins in a Microfluidic Device , 2003, Science.

[25]  Stoddart,et al.  The electrochemically-driven decomplexation/recomplexation of inclusion adducts of ferrocene derivatives with an electron-accepting receptor , 2000, The Journal of organic chemistry.

[26]  D L Polla,et al.  Microdevices in medicine. , 2000, Annual review of biomedical engineering.

[27]  J. Houston,et al.  A new force sensor incorporating force‐feedback control for interfacial force microscopy , 1991 .

[28]  Douglas Philp,et al.  Langmuir films and Langmuir-Blodgett multilayers incorporating mechanically-threaded molecules-pseudorotaxanes , 1996 .

[29]  W. Russel,et al.  Simplified predictions of hamaker constants from Lifshitz theory , 1988 .

[30]  J. F. Stoddart,et al.  Heterosupramolecular chemistry: programmed pseudorotaxane assembly at the surface of a nanocrystal. , 1999, Angewandte Chemie.

[31]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[32]  A. Kaifer,et al.  Cyclodextrin-Modified Gold Nanospheres , 2000 .

[33]  Frank Schreiber,et al.  Self-assembled monolayers: from ‘simple’ model systems to biofunctionalized interfaces , 2004 .

[34]  P. Descouts,et al.  Temperature-responsive size-exclusion chromatography using poly(N-isopropylacrylamide) grafted silica. , 1998, Biochimica et biophysica acta.

[35]  A. Yamaguchi,et al.  Reversible phase transitions in polymer gels induced by radiation forces , 2000, Nature.

[36]  S. T. Picraux,et al.  Direct Observation of Photo Switching in Tethered Spiropyrans Using the Interfacial Force Microscope , 2003 .

[37]  J. F. Stoddart,et al.  SUPPORTED MONOLAYERS CONTAINING PREFORMED BINDING SITES. SYNTHESIS AND INTERFACIAL BINDING PROPERTIES OF A THIOLATED BETA -CYCLODEXTRIN DERIVATIVE , 1995 .

[38]  Dan W. Urry,et al.  Molecular Machines: How Motion and Other Functions of Living Organisms Can Result from Reversible Chemical Changes , 1993 .

[39]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[40]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[41]  T Head-Gordon,et al.  Is water structure around hydrophobic groups clathrate-like? , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Jinho Hyun,et al.  Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide "switches". , 2004, Journal of the American Chemical Society.

[43]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[44]  Milan Mrksich,et al.  Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. , 2003, Journal of the American Chemical Society.

[45]  N. Abbott,et al.  Surface-Driven Switching of Liquid Crystals Using Redox-Active Groups on Electrodes , 2003, Science.

[46]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[47]  Frank Jahnke,et al.  Photon-Modulated Wettability Changes on Spiropyran-Coated Surfaces , 2002 .

[48]  M. Terrones,et al.  Covalent 2D and 3D networks from 1D nanostructures: designing new materials. , 2007, Nano letters.

[49]  C. Thaler,et al.  Regulation of organelle transport: Lessons from color change in fish , 1994 .

[50]  Huifang Xu,et al.  Hierarchical and self-similar growth of self-assembled crystals. , 2003, Angewandte Chemie.

[51]  J. C. Chen,et al.  Fast drop movements resulting from the phase change on a gradient surface. , 2001, Science.

[52]  P. Paul,et al.  Imaging of Pressure- and Electrokinetically Driven Flows through Open Capillaries. , 1998, Analytical chemistry.

[53]  R. L. Williamson,et al.  Generating strange magnetic and dielectric interactions: Classical molecules and particle foams , 2003 .

[54]  G. W. Gray Thermotropic liquid crystals , 1987 .

[55]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[56]  Tomohiro Onda,et al.  Super-Water-Repellent Fractal Surfaces , 1995 .

[57]  Paul Kirsche,et al.  Die Untersuchung und Begutachtung von Düngemitteln, Futtermitteln, Saatwaren und Bodenproben , 1929 .

[58]  Brian N. Johnson,et al.  An integrated nanoliter DNA analysis device. , 1998, Science.

[59]  Lisa M. Siewierski,et al.  Photoresponsive Monolayers Containing In-Chain Azobenzene , 1996 .

[60]  C. Chidsey,et al.  Free Energy and Temperature Dependence of Electron Transfer at the Metal-Electrolyte Interface , 1991, Science.

[61]  Leibler,et al.  Switchable tackiness and wettability of a liquid crystalline polymer , 1999, Science.

[62]  A. deMello,et al.  On-chip chromatography: the last twenty years. , 2002 .

[63]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[64]  George M. Whitesides,et al.  How to Make Water Run Uphill , 1992, Science.

[65]  Yanlin Song,et al.  Reversible Wettability of Photoresponsive Fluorine-Containing Azobenzene Polymer in Langmuir−Blodgett Films , 2001 .

[66]  G. Tiddy Surfactant-water liquid crystal phases , 1980 .

[67]  V. Abetz,et al.  Phase behaviour and morphologies of block copolymers , 2005 .

[68]  Mártin,et al.  Fast aggregation of colloidal silica. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[69]  Yukari Sato,et al.  In situ and dynamic monitoring of the self-assembling and redox processes of a ferrocenylundecanethiol monolayer by electrochemical quartz crystal microbalance , 1992 .

[70]  Shen,et al.  Vibrational spectra of water molecules at quartz/water interfaces. , 1994, Physical review letters.

[71]  Chad A Mirkin,et al.  Bio-bar-code-based DNA detection with PCR-like sensitivity. , 2004, Journal of the American Chemical Society.

[72]  T. Okano,et al.  Dynamic contact angle measurement of temperature-responsive surface properties for poly(N-isopropylacrylamide) grafted surfaces , 1994 .

[73]  George D Bachand,et al.  Controlling kinesin motor proteins in nanoengineered systems through a metal‐binding on/off switch , 2008, Biotechnology and bioengineering.

[74]  Darwin R. Reyes,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[75]  J. Lahann,et al.  A Reversibly Switching Surface , 2003, Science.

[76]  J. Fraser Stoddart,et al.  Fabrication and Transport Properties of Single-Molecule-Thick Electrochemical Junctions , 2000 .

[77]  I. Banerjee,et al.  Application of host-guest chemistry in nanotube-based device fabrication: photochemically controlled immobilization of azobenzene nanotubes on patterned alpha-CD monolayer/Au substrates via molecular recognition. , 2003, Journal of the American Chemical Society.

[78]  Takashi Miyata,et al.  A reversibly antigen-responsive hydrogel , 1999, Nature.

[79]  L. Hurley,et al.  Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations. , 1982, Science.

[80]  F. Jülicher,et al.  Modeling molecular motors , 1997 .

[81]  N. Abbott,et al.  Ferrocenyl surfactants at the surface of water : Principles for active control of interfacial properties , 1996 .

[82]  C. Hussey,et al.  Host−Guest Complexation in Self-Assembled Monolayers: Inclusion of a Monolayer-Anchored Cationic Ferrocene-Based Guest by Cyclodextrin Hosts , 1998 .

[83]  Ashutosh Chilkoti,et al.  Creating “Smart” Surfaces Using Stimuli Responsive Polymers , 2002 .

[84]  Lei Jiang,et al.  Photochemical-controlled switching based on azobenzene monolayer modified silicon (111) surface. , 2005, The journal of physical chemistry. B.

[85]  Plamen Atanassov,et al.  Photoregulation of Mass Transport through a Photoresponsive Azobenzene-Modified Nanoporous Membrane , 2004 .

[86]  Francesco Stellacci,et al.  Divalent Metal Nanoparticles , 2007, Science.

[87]  A. Ulman,et al.  Ultrathin organic films: From Langmuir-Blodgett to self assembly , 1991 .

[88]  Nanoscale assembly : chemical techniques , 2005 .

[89]  Uwe H F Bunz,et al.  Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. , 2003, Journal of the American Chemical Society.

[90]  Douglas Philp,et al.  A Photochemically Driven Molecular Machine , 1993 .

[91]  T. M. Parker,et al.  Nanometric design of extraordinary hydrophobic‐induced pKa shifts for aspartic acid: Relevance to protein mechanisms , 1994, Biopolymers.

[92]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[93]  T. Matsuda,et al.  Thermoresponsive Structural Change of a Poly(N-isopropylacrylamide) Graft Layer Measured with an Atomic Force Microscope , 2001 .

[94]  Daniel Y. Kwok,et al.  Contact angle measurement and contact angle interpretation , 1999 .

[95]  R. Gordon,et al.  Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. , 1999, Biochimica et biophysica acta.

[96]  T. Okano,et al.  Temperature-Responsive Chromatography Using Poly(N-isopropylacrylamide)-Modified Silica. , 1996, Analytical chemistry.

[97]  G. Whitesides,et al.  Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays , 1997, Science.

[98]  A. Chilkoti,et al.  Thermodynamically reversible addressing of a stimuli responsive fusion protein onto a patterned surface template , 2003 .

[99]  D. Walba,et al.  Molecular orientation of a model liquid crystal alignment layer. , 2003, Talanta.

[100]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[101]  D. Reinhoudt,et al.  Self-assembled monolayers of heptapodant ß-cyclodextrins on gold , 1998 .

[102]  C. Murphy,et al.  pH-triggered assembly of gold nanorods. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[103]  D. Schmaljohann Thermo- and pH-responsive polymers in drug delivery. , 2006, Advanced drug delivery reviews.

[104]  Viola Vogel,et al.  Mechanisms of Microtubule Guiding on Microfabricated Kinesin-Coated Surfaces: Chemical and Topographic Surface Patterns , 2003 .

[105]  A. R. Kaiser,et al.  Microfabricated structures for integrated DNA analysis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[107]  Z Suo,et al.  Programmable motion and patterning of molecules on solid surfaces. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[108]  W. Frey,et al.  Dynamic Addressing of a Surface Pattern by a Stimuli‐Responsive Fusion Protein , 2003 .

[109]  Bruce Alberts,et al.  Essential Cell Biology , 1983 .

[110]  Ichimura,et al.  Light-driven motion of liquids on a photoresponsive surface , 2000, Science.

[111]  David J. Beebe,et al.  Active control of electroosmotic flow in microchannels using light , 2001 .

[112]  D. Beebe,et al.  Surface-directed liquid flow inside microchannels. , 2001, Science.

[113]  Toyoichi Tanaka,et al.  Collapse of Gels in an Electric Field , 1982, Science.

[114]  R. Advíncula,et al.  Photoisomerization of Polyionic Layer-by-Layer Films Containing Azobenzene , 1999 .

[115]  S. Furumi,et al.  Photoregulation of liquid crystal alignment by a composite polymer film containing retinoic acid , 2000 .

[116]  W. Schuhmann,et al.  Modulation of the diffusion coefficient of a hapten-modified redox species as a basis for an amplified electrochemical affinity assay , 2000 .

[117]  G. Exarhos,et al.  Bicontinuous, Thermoresponsive, L3‐Phase Silica Nanocomposites and Their Smart Drug‐Delivery Applications , 2005 .

[118]  Karl F. Böhringer Surface modification and modulation in microstructures: controlling protein adsorption, monolayer desorption and micro-self-assembly , 2003 .

[119]  M. Mucha,et al.  Polymer as an important component of blends and composites with liquid crystals , 2003 .

[120]  H. Adler,et al.  Temperature and pH dependent solubility of novel poly(N‐isopropylacrylamide)‐copolymers , 2000 .

[121]  V. Rotello,et al.  Photochemical Control of the Macroconformation of Polystyrene Using Azobenzene Side Chains , 2000 .

[122]  P. Dario,et al.  Micro-systems in biomedical applications , 2000 .

[123]  G. Pollack Cells, Gels and the Engines of Life , 2001 .

[124]  Russell J. Stewart,et al.  Toward kinesin-powered microdevices , 2000 .

[125]  Arunan Nadarajah,et al.  A Comprehensive Model of Multiprotein Adsorption on Surfaces , 1994 .

[126]  B. Bunker,et al.  Viscous “Interphase” Water Adjacent to Oligo(ethylene glycol)-Terminated Monolayers , 2003 .

[127]  S. L. Westcott,et al.  Independent optically addressable nanoparticle-polymer optomechanical composites , 2002 .

[128]  Shah,et al.  Electrochemical principles for active control of liquids on submillimeter scales , 1999, Science.

[129]  J. Israelachvili Intermolecular and surface forces , 1985 .

[130]  K. Rieder,et al.  Reversible cis-trans isomerization of a single azobenzene molecule. , 2006, Angewandte Chemie.

[131]  G. Kokkinidis,et al.  Electrochemical studies of ferrocene derivatives and their complexation by β-cyclodextrin , 1999 .

[132]  M. Graham,et al.  Role of desorption kinetics in determining marangoni flows generated by using electrochemical methods and redox-active surfactants. , 2005, Langmuir : the ACS journal of surfaces and colloids.