Limited-memory LDL⊤ factorization of symmetric quasi-definite matrices with application to constrained optimization
暂无分享,去创建一个
[1] Jorge J. Moré,et al. Benchmarking optimization software with performance profiles , 2001, Math. Program..
[2] Mark T. Jones,et al. An improved incomplete Cholesky factorization , 1995, TOMS.
[3] E. Cuthill,et al. Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.
[4] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[5] Anders Forsgren,et al. Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..
[6] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[7] Owe Axelsson,et al. Preconditioning methods for linear systems arising in constrained optimization problems , 2003, Numer. Linear Algebra Appl..
[8] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[9] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[10] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[11] C. Mészáros,et al. A repository of convex quadratic programming problems , 1999 .
[12] J. Burke,et al. Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation , 2013, 1303.1993.
[13] Alan George,et al. A linear time implementation of the reverse Cuthill-McKee algorithm , 1980, BIT.
[14] John J. Buoni. A stable method for the incomplete factorization of H-matrices , 1990 .
[15] J. Ortega. Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.
[16] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[17] Dominique Orban,et al. Bounds on Eigenvalues of Matrices Arising from Interior-Point Methods , 2012, SIAM J. Optim..
[18] Nicholas I. M. Gould,et al. Implicit-Factorization Preconditioning and Iterative Solvers for Regularized Saddle-Point Systems , 2006, SIAM J. Matrix Anal. Appl..
[19] Philippe Courtier,et al. Dual formulation of four‐dimensional variational assimilation , 1997 .
[20] Na Li,et al. Crout versions of ILU factorization with pivoting for sparse symmetric matrices. , 2005 .
[21] Nicholas I. M. Gould,et al. Numerical methods for large-scale nonlinear optimization , 2005, Acta Numerica.
[22] Jorge Nocedal,et al. Knitro: An Integrated Package for Nonlinear Optimization , 2006 .
[23] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[24] Robert J. Vanderbei,et al. An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..
[25] Lorenz T. Biegler,et al. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..
[26] M. Tismenetsky,et al. A new preconditioning technique for solving large sparse linear systems , 1991 .
[27] Sanjay Mehrotra,et al. On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..
[28] Chih-Jen Lin,et al. Incomplete Cholesky Factorizations with Limited Memory , 1999, SIAM J. Sci. Comput..
[29] Dominique Orban,et al. Iterative Methods for Symmetric Quasi-Definite Linear Systems. Part I: Theory , 2013 .
[30] A. Messaoudi,et al. On the stability of the incomplete LU-factorizations and characterizations of H-matrices , 1995 .
[31] I. Gustafsson. A class of first order factorization methods , 1978 .
[32] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[33] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[34] R. Vanderbei. Symmetric Quasi-Definite Matrices , 2006 .
[35] Nicholas I. M. Gould,et al. CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.
[36] Michael P. Friedlander,et al. A primal–dual regularized interior-point method for convex quadratic programs , 2010, Mathematical Programming Computation.
[37] T. Manteuffel. An incomplete factorization technique for positive definite linear systems , 1980 .
[38] Alan George,et al. On the Condition of Symmetric Quasi-Definite Matrices , 2000, SIAM J. Matrix Anal. Appl..
[39] Jennifer A. Scott,et al. HSL_MI28 , 2014, ACM Trans. Math. Softw..
[40] N. Munksgaard,et al. Solving Sparse Symmetric Sets of Linear Equations by Preconditioned Conjugate Gradients , 1980, TOMS.
[41] Joseph R. Shinnerl,et al. On the Stability of Cholesky Factorization for Symmetric Quasidefinite Systems , 1996, SIAM J. Matrix Anal. Appl..
[42] O. Axelsson. Iterative solution methods , 1995 .
[43] Miroslav Tuma,et al. A Note on the LDLT Decomposition of Matrices from Saddle-Point Problems , 2001, SIAM J. Matrix Anal. Appl..
[44] PDCO : Primal-Dual Interior Methods 1 Interior methods for linear optimization , .
[45] Yousef Saad,et al. ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..
[46] Edmond Chow,et al. Crout Versions of ILU for General Sparse Matrices , 2003, SIAM J. Sci. Comput..
[47] Robert J. Vanderbei,et al. Symmetric Quasidefinite Matrices , 1995, SIAM J. Optim..
[48] Igor E. Kaporin,et al. High quality preconditioning of a general symmetric positive definite matrix based on its U , 1998 .
[49] Gene H. Golub,et al. Matrix computations , 1983 .
[50] Igor E. Kaporin,et al. High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU-decomposition , 1998, Numer. Linear Algebra Appl..