Planetary X-ray fluorescence analogue laboratory experiments and an elemental abundance algorithm for C1XS

Abstract We have conducted laboratory experiments as an analogue to planetary XRF (X-ray fluorescence) missions in order to investigate the role of changing incidence (and phase) angle geometry and sample grain-size on the intensity of XRF from regolith-like samples. Our data provide evidence of a grain-size effect, where XRF line intensity decreases with increasing sample grain-size, as well as an almost ubiquitous increase in XRF line intensity above incidence angles of ∼60°. Data from a lunar regolith simulant are also used to test the accuracy of an XRF abundance algorithm developed at the Rutherford Appleton Laboratory (RAL), which is used to estimate the major element abundance of the lunar surface from Chandrayaan-1 X-ray Spectrometer (C1XS) XRF data. In ideal situations (i.e., when the input spectrum is well defined and the XRF spectrum has a sufficient signal to noise ratio) the algorithm can recover a known rock composition to within 1.0 elemental wt% (1 σ ).

[1]  Ian B. Hutchinson,et al.  Proton damage in the E2V swept charge device , 2004 .

[2]  Manuel Grande,et al.  Chandrayaan-1 X-ray Spectrometer (C1XS)—Instrument design and technical details , 2009 .

[3]  Ross Bryant,et al.  Measuring Surface Roughness Height to Parameterize Radar Backscatter Models for Retrieval of Surface Soil Moisture , 2007, IEEE Geoscience and Remote Sensing Letters.

[4]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[5]  P. Pochet A Quantitative Analysis , 2006 .

[6]  D. Gosselin,et al.  Petrology and chemistry of Apollo 12 regolith breccias , 1985 .

[7]  Aki Kallonen,et al.  Regolith effects in planetary X-ray fluorescence spectroscopy: Laboratory studies at 1.7 - 6.4 keV , 2009 .

[8]  S. Squyres,et al.  X‐ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros , 2001 .

[9]  Manuel Grande,et al.  The scientific rationale for the C1XS X-ray spectrometer on India's Chandrayaan-1 mission to the moon , 2009 .

[10]  Karri Muinonen,et al.  Laboratory studies into the effect of regolith on planetary X-ray fluorescence spectroscopy , 2008 .

[11]  Measuring and interpreting X-ray fluorescence from planetary surfaces. , 2008, Analytical chemistry.

[12]  Jason Gow,et al.  The effect of protons on the performance of swept-charge devices , 2009 .

[13]  Grant Heiken,et al.  Book-Review - Lunar Sourcebook - a User's Guide to the Moon , 1991 .

[14]  A. Korchak On the origin of solar flare X-rays , 1971 .

[15]  R. Morris,et al.  Apollo 15 regolith breccias - Window to a KREEP regolith , 1989 .

[16]  R. W. Fink,et al.  X-Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities , 1972 .

[17]  I. Crawford,et al.  The petrology and geochemistry of Miller Range 05035: A new lunar gabbroic meteorite , 2008 .

[18]  C. Allen,et al.  JSC-1: A NEW LUNAR SOIL SIMULANT , 1994 .

[19]  Paul Gorenstein,et al.  Apollo 15 and 16 results of the integrated geochemical experiment , 1973 .

[20]  Richard D. Starr,et al.  The X-Ray Spectrometer on the MESSENGER Spacecraft , 2007 .

[21]  David J. Burt,et al.  The swept charge device, a novel CCD-based EDX detector: first results , 2001 .

[22]  E. Eliason,et al.  Lunar Surface Chemistry: A New Imaging Technique , 1977, Science.

[23]  R. Gardner,et al.  A proposed model for particle‐size effects in the X‐ray fluorescence analysis of heterogeneous powders that includes incidence angle and non‐random packing effects , 1978 .

[24]  P. F. Berry,et al.  Particle Size Effects in Radioisotope X-Ray Spectrometry , 1968 .

[25]  Bernard H. Foing,et al.  X-ray fluorescence observations of the moon by SMART-1/D-CIXS and the first detection of Ti Kα from the lunar surface , 2009 .

[26]  R. Morris,et al.  In quest of lunar regolith breccias of exotic provenance: a uniquely anorthositic sample from the Fra Mauro (Apollo 14) highlands , 1990 .

[27]  Manuel Grande,et al.  Initial Results from the C1XS X-Ray Spectrometer on Chandrayaan-1 , 2008 .

[28]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[29]  Donald S. Burnett,et al.  Lunar surface processes , 1992 .

[30]  R. Morris,et al.  A potpourri of regolith breccias: “New” samples from the Apollo 14, 16, and 17 landing sites , 1987 .

[31]  P. Sreekumar,et al.  Calibration of the C1XS instrument on Chandrayaan-1 , 2010 .

[32]  Paul Helfenstein,et al.  Submillimeter-Scale Topography of the Lunar Regolith , 1999 .

[33]  Nicolas Thomas,et al.  The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moon - First results , 2007 .

[34]  T. Arai,et al.  X-Ray Fluorescence Experiments on the SELENE (Kaguya) Spacecraft , 2008 .

[35]  S. Noble The Lunar Regolith , 2009 .

[36]  Paul H. Johnson,et al.  Apollo 16 regolith breccias: characterization and evidence for early formation in the mega-regolith. , 1986 .

[37]  Kazunori Ogawa,et al.  Laboratory experiments of particle size effect in X-ray fluorescence and implications to remote X-ray spectrometry of lunar regolith surface , 2008 .

[38]  F. Claisse,et al.  Heterogeneity Effects in X-Ray Analysis* , 1961 .

[39]  J. Trombka,et al.  Remote X-ray spectrometry for NEAR and future missions: Modeling and analyzing X-ray production from source to surface , 1997 .

[40]  P. Espen,et al.  General approach for quantitative energy dispersive x-ray fluorescence analysis based on fundamental parameters , 1991 .