Spectral Theory of the Frame Flow on Hyperbolic 3-Manifolds

[1]  M. Tsujii,et al.  Smooth mixing Anosov flows in dimension three are exponentially mixing , 2020, Annals of Mathematics.

[2]  Samuel C. Edwards,et al.  Spectral gap and exponential mixing on geometrically finite hyperbolic manifolds , 2020, Duke Mathematical Journal.

[3]  S. Dyatlov,et al.  Mathematical Theory of Scattering Resonances , 2019, Graduate Studies in Mathematics.

[4]  Y. Bonthonneau,et al.  Ruelle Resonances for Manifolds with hyperbolic cusps , 2017 .

[5]  T. Weich,et al.  Quantum-Classical Correspondence on Associated Vector Bundles Over Locally Symmetric Spaces , 2017, International Mathematics Research Notices.

[6]  Fr'ed'eric Naud On the rate of mixing of circle extensions of Anosov maps , 2016, Journal of Spectral Theory.

[7]  Pratyush Sarkar,et al.  Exponential mixing of frame flows for convex cocompact hyperbolic manifolds , 2016, Compositio Mathematica.

[8]  M. Tsujii Exponential mixing for generic volume-preserving Anosov flows in dimension three , 2016, 1601.00063.

[9]  Mark F. Demers,et al.  Exponential decay of correlations for finite horizon Sinai billiard flows , 2015, 1506.02836.

[10]  S. Dyatlov,et al.  Pollicott–Ruelle Resonances for Open Systems , 2014, 1410.5516.

[11]  S. Dyatlov Spectral gaps for normally hyperbolic trapping , 2014, 1403.6401.

[12]  Dale Winter Mixing of frame flow for rank one locally symmetric spaces and measure classification , 2014, 1403.2425.

[13]  S. Dyatlov,et al.  Power spectrum of the geodesic flow on hyperbolic manifolds , 2014, Analysis & PDE.

[14]  M. Tsujii,et al.  The semiclassical zeta function for geodesic flows on negatively curved manifolds , 2013, 1311.4932.

[15]  S. Sternberg,et al.  Semi-Classical Analysis , 2013 .

[16]  S. Dyatlov,et al.  Dynamical zeta functions for Anosov flows via microlocal analysis , 2013, 1306.4203.

[17]  M. Zworski,et al.  Decay of correlations for normally hyperbolic trapping , 2013, 1302.4483.

[18]  A. Mohammadi,et al.  Matrix coefficients, counting and primes for orbits of geometrically finite groups , 2012, Journal of the European Mathematical Society.

[19]  A. Jean-François Fractal Weyl law for skew extensions of expanding maps , 2012 .

[20]  M. Tsujii,et al.  Prequantum transfer operator for Anosov diffeomorphism. (Preliminary Version). , 2012 .

[21]  J. Arnoldi Fractal Weyl law for skew extensions of expanding maps , 2011, 1112.5109.

[22]  M. Tsujii Contact Anosov flows and the Fourier–Bros–Iagolnitzer transform , 2011, Ergodic Theory and Dynamical Systems.

[23]  J. Sjöstrand,et al.  Upper Bound on the Density of Ruelle Resonances for Anosov Flows , 2010, 1003.0513.

[24]  F. Faure Semiclassical origin of the spectral gap for transfer operators of a partially expanding map , 2009, Nonlinearity.

[25]  L. Stoyanov Spectra of Ruelle transfer operators for Axiom A flows , 2008, 0810.1126.

[26]  J. Sjöstrand,et al.  Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances , 2008, 0802.1780.

[27]  V. Baladi,et al.  Anisotropic hölder and sobolev spaces for hyperbolic diffeomorphisms , 2005, math/0505015.

[28]  C. Liverani,et al.  Banach spaces adapted to Anosov systems , 2004, Ergodic Theory and Dynamical Systems.

[29]  C. Liverani On contact Anosov flows , 2004 .

[30]  M. Pollicott,et al.  Stable Ergodicity and Frame Flows , 2003 .

[31]  D. Dolgopyat On decay of correlations in Anosov flows , 1998 .

[32]  S. Zelditch On a “quantum chaos” theorem of R. Schrader and M. Taylor , 1992 .

[33]  Mark Pollicott,et al.  Exponential mixing for the geodesic flow on hyperbolic three-manifolds , 1992 .

[34]  R. Spatzier,et al.  Geometrically finite groups, Patterson-Sullivan measures and Ratner's ridigity theorem , 1990 .

[35]  V. Guillemin,et al.  Circular symmetry and the trace formula , 1989 .

[36]  R. Schrader,et al.  Semiclassical asymptotics, gauge fields, and quantum chaos , 1989 .

[37]  V. Guillemin,et al.  The trace formula for vector bundles , 1986 .

[38]  R. Schrader,et al.  Small ħ asymptotics for quantum partition functions associated to particles in external Yang-Mills potentials , 1984 .

[39]  R. Schrader,et al.  Classical limits for quantum particles in external Yang-Mills potentials , 1983 .

[40]  M. Gromov,et al.  On the ergodicity of frame flows , 1980 .

[41]  M. E. Taylor,et al.  Asymptotic behavior of multiplicities of representations of compact groups , 1979 .

[42]  R. Howe,et al.  Asymptotic properties of unitary representations , 1979 .

[43]  Carlangelo Liverani,et al.  Smooth Anosov flows: Correlation spectra and stability , 2007 .

[44]  Fr'ed'eric Naud,et al.  Expanding maps on Cantor sets and analytic continuation of zeta functions , 2005 .

[45]  L. Charles Aspects semi-classiques de la quantification géométrique , 2000 .

[46]  R. Jensen Quantum chaos , 1992, Nature.

[47]  V. Guillemin,et al.  Reduction and the trace formula , 1990 .

[48]  Calvin C. Moore,et al.  Exponential Decay of Correlation Coefficients for Geodesic Flows , 1987 .

[49]  H. Karcher,et al.  Frame flows on manifolds with pinched negative curvature , 1984 .

[50]  M. Brin Topological transitivity of one class of dynamic systems and flows of frames on manifolds of negative curvature , 1975 .

[51]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .