Computational Singular Perturbation Method and Tangential Stretching Rate Analysis of Large Scale Simulations of Reactive Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification. Part 1, Basic Concepts

This chapter provides a review of the basic ideas at the core of the Computational Singular Perturbation (CSP) method and the Tangential Stretching Rate (TSR) analysis. It includes a coherent summary of the theoretical foundations of these two methodologies while emphasizing their mutual interconnections. The main theoretical findings are presented in a systematic fashion. Their virtues and limitations will be discussed with reference to auto-ignition systems, laminar and turbulent premixed flames, and non-premixed jet flames. The material presented in the chapter constitutes an effective guideline for further studies.

[1]  Habib N. Najm,et al.  Structure of n-heptane/air triple flames in partially-premixed mixing layers , 2011 .

[2]  Mauro Valorani,et al.  Dynamical system analysis of ignition phenomena using the Tangential Stretching Rate concept , 2015 .

[3]  Mauro Valorani,et al.  Enhancements of the G-Scheme Framework , 2018, Flow, Turbulence and Combustion.

[4]  Tianfeng Lu,et al.  A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry , 2008 .

[5]  Dimitris M. Manias,et al.  Investigation of the turbulent flame structure and topology at different Karlovitz numbers using the tangential stretching rate index , 2019, Combustion and Flame.

[6]  Dimitris A. Goussis,et al.  The role of slow system dynamics in predicting the degeneracy of slow invariant manifolds: The case of vdP relaxation-oscillations , 2013 .

[7]  Mauro Valorani,et al.  Entropy production and timescales , 2017 .

[8]  D. Kyritsis,et al.  Algorithmic determination of the mechanism through which H2O-dilution affects autoignition dynamics and NO formation in CH4/air mixtures , 2016 .

[9]  D. Kyritsis,et al.  Comparative investigation of homogeneous autoignition of DME/air and EtOH/air mixtures at low initial temperatures , 2017 .

[10]  Mauro Valorani,et al.  Sensitivity analysis and mechanism simplification using the G-Scheme framework , 2018 .

[11]  H. Najm,et al.  Reactive and reactive-diffusive time scales in stiff reaction-diffusion systems , 2005 .

[12]  Epaminondas Mastorakos,et al.  H2/air autoignition: The nature and interaction of the developing explosive modes , 2015 .

[13]  Habib N. Najm,et al.  Skeletal mechanism generation with CSP and validation for premixed n-heptane flames , 2009 .

[14]  Habib N. Najm,et al.  An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP , 2006 .

[15]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[16]  Habib N. Najm,et al.  Inertial manifolds with CSP , 2003 .

[17]  Dimitris M. Manias,et al.  The mechanism by which CH2O and H2O2 additives affect the autoignition of CH4/air mixtures , 2016 .

[18]  Habib N. Najm,et al.  A CSP and tabulation-based adaptive chemistry model , 2007 .

[19]  Hans G. Kaper,et al.  Analysis of the Computational Singular Perturbation Reduction Method for Chemical Kinetics , 2004, J. Nonlinear Sci..

[20]  C. Law,et al.  Complex CSP for chemistry reduction and analysis , 2001 .

[21]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics , 1993 .

[22]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[23]  Mauro Valorani,et al.  The G-Scheme: A framework for multi-scale adaptive model reduction , 2009, J. Comput. Phys..

[24]  Paul G. Arias,et al.  Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations , 2017 .

[25]  S. H. Lam,et al.  REDUCED CHEMISTRY-DIFFUSION COUPLING , 2007 .

[26]  Massimiliano Giona,et al.  Stretching-based diagnostics and reduction of chemical kinetic models with diffusion , 2007, J. Comput. Phys..

[27]  Dimitris A. Goussis,et al.  Asymptotic Solution of Stiff PDEs with the CSP Method: The Reaction Diffusion Equation , 1998, SIAM J. Sci. Comput..

[28]  Habib N. Najm,et al.  Skeletal mechanism generation and analysis for n-heptane with CSP , 2007 .

[29]  Mauro Valorani,et al.  Characterization of jet-in-hot-coflow flames using tangential stretching rate , 2019, Combustion and Flame.

[30]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[31]  Habib N. Najm,et al.  CSP analysis of a transient flame-vortex interaction: time scales and manifolds , 2003 .

[32]  Mauro Valorani,et al.  Tangential stretching rate (TSR) analysis of non premixed reactive flows , 2017 .

[33]  Habib N. Najm,et al.  Simplified CSP analysis of a stiff stochastic ODE system , 2012 .

[34]  Habib N. Najm,et al.  Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method , 2005 .

[35]  Habib N. Najm,et al.  Model Reduction and Physical Understanding of Slowly Oscillating Processes: The Circadian Cycle , 2006, Multiscale Model. Simul..