Keeping it real: revisiting a real-space approach to running ensembles of cosmological N-body simulations

In setting up initial conditions for ensembles of cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to real-space statistics and allowing the DC mode (i.e. overdensity) to vary from box to box as it would in the real universe. As a stringent test of both approaches, I perform ensembles of simulations using power law and a "powerlaw times a bump" model inspired by baryon acoustic oscillations (BAO), exploiting the self-similarity of these initial conditions to quantify the accuracy of the matter-matter two-point correlation results. The real-space method, which was originally proposed by Pen 1997 and implemented by Sirko 2005, performed well in producing the expected self-similar behavior and corroborated the non-linear evolution of the BAO feature observed in conventional simulations, even in the strongly-clustered regime (sigma8 >= 1). In revisiting the real-space method championed by Sirko 2005, it was also noticed that this earlier study overlooked an important integral constraint correction to the correlation function in results from the conventional approach that can be important in LambdaCDM simulations with Lbox = = Lbox / 10. Rectifying this shows that the fourier space and real space methods are about equally accurate and efficient for modeling the evolution and growth of the correlation function, contrary to previous claims. An appendix provides a useful independent-of-epoch analytic formula for estimating the importance of the integral constraint bias on correlation function measurements in LambdaCDM simulations.

[1]  D. Weinberg,et al.  Self-Similar Bumps and Wiggles: Isolating the Evolution of the BAO Peak with Power-law Initial Conditions , 2011, 1101.1523.

[2]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[3]  Ue-Li Pen,et al.  Generating Cosmological Gaussian Random Fields , 1997, astro-ph/9709261.

[4]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[5]  G. Efstathiou,et al.  The formation of dark halos in a universe dominated by cold dark matter , 1988 .

[6]  Applications of the halo model to large scale structure measurements of the Luminous Red Galaxies , 2008 .

[7]  The growth of correlations in the matter power spectrum , 1998, astro-ph/9812129.

[8]  Do Distinct Cosmological Models Predict Degenerate Halo Populations , 2002, astro-ph/0202358.

[9]  B. Reid,et al.  LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS , 2008, 0811.1025.

[11]  M. Zaldarriaga,et al.  Power Spectrum Correlations Induced by Nonlinear Clustering , 1999, astro-ph/9901099.

[12]  J. Frieman,et al.  Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes , 1998, astro-ph/9811184.

[13]  A. I. Saichev,et al.  The large-scale structure of the Universe in the frame of the model equation of non-linear diffusion , 1989 .

[14]  J. Colberg,et al.  The omega dependence in the equations of motion , 1997 .

[15]  The Dependence in the Equations of Motion , 1997, astro-ph/9705121.

[16]  N. University,et al.  On measuring the covariance matrix of the non-linear power spectrum from simulations , 2005, astro-ph/0511416.

[17]  G. Lake,et al.  Evolution of the mass function of dark matter haloes , 2003, astro-ph/0301270.

[18]  Joachim Stadel,et al.  Towards an accurate mass function for precision cosmology , 2012, 1206.5302.

[19]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[20]  P. Ricker,et al.  Dark Energy Studies: Challenges to Computational Cosmology , 2005, astro-ph/0510194.

[21]  Roman Scoccimarro Transients from initial conditions: a perturbative analysis , 1998 .

[22]  Changbom Park,et al.  Primordial fluctuations and non-linear structure , 1991 .

[23]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[24]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[25]  B. Marcos,et al.  Towards quantitative control on discreteness error in the non-linear regime of cosmological N-body simulations , 2008, 0805.1357.

[26]  S. Cole Adding long-wavelength power to N-body simulations , 1996, astro-ph/9604046.

[27]  J. M. Gelb,et al.  Cosmological N‐Body Simulations , 1991 .

[28]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[29]  M. Crocce,et al.  Precision cosmology in muddy waters: Cosmological constraints and N-body codes , 2012, 1211.6434.

[30]  J. Gunn,et al.  Large-scale structure and the adhesion approximation , 1990 .

[31]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[32]  M. Zaldarriaga,et al.  The mildly non-linear regime of structure formation , 2011, 1109.4939.

[33]  D. Eisenstein,et al.  HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME , 2009, 0910.5005.

[34]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[35]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[36]  Katrin Heitmann,et al.  The Halo Mass Function: High-Redshift Evolution and Universality , 2007, astro-ph/0702360.

[37]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[38]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[39]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[40]  Carlos S. Frenk,et al.  Gravitational clustering from scale-free initial conditions , 1988 .

[41]  I. Szapudi,et al.  FAST GENERATION OF ENSEMBLES OF COSMOLOGICAL N-BODY SIMULATIONS VIA MODE RESAMPLING , 2011, 1103.2767.

[42]  Y. Zel’dovich Gravitational instability: An Approximate theory for large density perturbations , 1969 .

[43]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[44]  Generation of Gaussian Density Fields , 2005, astro-ph/0506540.

[45]  Simon D. M. White,et al.  One simulation to fit them all - changing the background parameters of a cosmological N-body simulation , 2009, 0912.4277.

[46]  A. Kravtsov,et al.  IMPLEMENTING THE DC MODE IN COSMOLOGICAL SIMULATIONS WITH SUPERCOMOVING VARIABLES , 2011, 1104.1428.

[47]  R. Wechsler,et al.  THE IMPACT OF THEORETICAL UNCERTAINTIES IN THE HALO MASS FUNCTION AND HALO BIAS ON PRECISION COSMOLOGY , 2009, 0910.3668.

[48]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[49]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[50]  L. Widrow,et al.  Power spectrum for the small-scale Universe , 2009, 0901.4576.

[51]  N. Yoshida,et al.  SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. COVARIANCE MATRIX OF THE MATTER POWER SPECTRUM , 2009, 0902.0371.

[52]  P. Peebles,et al.  On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe , 1977 .

[53]  Effects of the size of cosmological N-Body simulations on physical quantities — I: Mass Function , 2006, astro-ph/0601320.

[54]  David Higdon,et al.  Cosmic calibration: Constraints from the matter power spectrum and the cosmic microwave background , 2007 .

[55]  Edwin Sirko,et al.  Initial Conditions to Cosmological N-Body Simulations, or, How to Run an Ensemble of Simulations , 2005, astro-ph/0503106.

[56]  W. Percival,et al.  Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance , 2011, 1111.6596.

[57]  D. Higdon,et al.  Simulations and cosmological inference: A statistical model for power spectra means and covariances , 2008, 0806.1487.

[58]  Statistical Physics for cosmic structures , 2001, astro-ph/0110169.