Information Volume of Fuzzy Membership Function

Fuzzy membership function plays an important role in fuzzy set theory. However, how to measure the information volume of fuzzy membership function is still an open issue. The existing methods to determine the uncertainty of fuzzy membership function only measure the first-order information volume, but do not take higher-order information volume into consideration. To address this issue, a new information volume of fuzzy membership function is presented in this paper, which includes the first-order and the higher-order information volume. By continuously separating the hesitancy degree until convergence, the information volume of the fuzzy membership function can be calculated. In addition, when the hesitancy degree of a fuzzy membership function equals to zero, the information volume of this special fuzzy membership function is identical to Shannon entropy. Two typical fuzzy sets, namely classic fuzzy sets and intuitiontistic fuzzy sets, are studied. Several examples are illustrated to show the efficiency of the proposed information volume of fuzzy membership function.