Markov models on trees: Reconstruction and applications

Markov Models on Trees: Reconstruction and Applications

[1]  Eric Vigoda,et al.  Phylogenetic MCMC Algorithms Are Misleading on Mixtures of Trees , 2005, Science.

[2]  Luca Trevisan,et al.  Improved Non-approximability Results for Minimum Vertex Cover with Density Constraints , 1999, Electron. Colloquium Comput. Complex..

[3]  D. Ioffe On the extremality of the disordered state for the Ising model on the Bethe lattice , 1996 .

[4]  H. Munro,et al.  Mammalian protein metabolism , 1964 .

[5]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[6]  Elchanan Mossel,et al.  Information flow on trees , 2001, math/0107033.

[7]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[8]  Elchanan Mossel,et al.  On the Impossibility of Reconstructing Ancestral Data and Phylogenies , 2003, J. Comput. Biol..

[9]  Yishay Mansour,et al.  Weakly learning DNF and characterizing statistical query learning using Fourier analysis , 1994, STOC '94.

[10]  Elchanan Mossel,et al.  The Kesten-Stigum Reconstruction Bound Is Tight for Roughly Symmetric Binary Channels , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[11]  Michael Kearns,et al.  Efficient noise-tolerant learning from statistical queries , 1993, STOC.

[12]  Paul W. Goldberg,et al.  Evolutionary Trees Can be Learned in Polynomial Time in the Two-State General Markov Model , 2001, SIAM J. Comput..

[13]  Y. Higuchi Remarks on the Limiting GIbbs States on a (d+1)-Tree , 1977 .

[14]  J. Neyman MOLECULAR STUDIES OF EVOLUTION: A SOURCE OF NOVEL STATISTICAL PROBLEMS* , 1971 .

[15]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[16]  Michael J Benton,et al.  Dating the Tree of Life , 2003, Science.

[17]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[18]  P. Erdös,et al.  A few logs suffice to build (almost) all trees (l): part I , 1997 .

[19]  Elchanan Mossel Phase transitions in phylogeny , 2003, Transactions of the American Mathematical Society.

[20]  Tandy J. Warnow,et al.  A Few Logs Suffice to Build (almost) All Trees: Part II , 1999, Theor. Comput. Sci..

[21]  Gene H. Golub,et al.  Matrix computations , 1983 .

[22]  B. Rannala,et al.  Phylogenetic methods come of age: testing hypotheses in an evolutionary context. , 1997, Science.

[23]  Joseph W. Thornton,et al.  Resurrecting ancient genes: experimental analysis of extinct molecules , 2004, Nature Reviews Genetics.

[24]  Elchanan Mossel,et al.  Optimal phylogenetic reconstruction , 2005, STOC '06.

[25]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[26]  J. Feldman,et al.  Learning mixtures of product distributions over discrete domains , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[27]  Elchanan Mossel,et al.  A phase transition for a random cluster model on phylogenetic trees. , 2004, Mathematical biosciences.

[28]  H. Wareham On the computational complexity of inferring evolutionary trees , 1992 .

[29]  Y. Vardi,et al.  Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data , 1996 .

[30]  J. A. Cavender Taxonomy with confidence , 1978 .

[31]  S. Roch On learning thresholds of parities and unions of rectangles in random walk models , 2007, Random Struct. Algorithms.

[32]  Sébastien Roch,et al.  Upstream reciprocity and the evolution of gratitude , 2007, Proceedings of the Royal Society B: Biological Sciences.

[33]  Elchanan Mossel,et al.  Slow emergence of cooperation for win-stay lose-shift on trees , 2006, Machine Learning.

[34]  B. Grant,et al.  Phylogeny of Darwin's finches as revealed by mtDNA sequences. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Sébastien Roch,et al.  A short proof that phylogenetic tree reconstruction by maximum likelihood is hard , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[36]  Ziheng Yang,et al.  STATISTICAL TESTS OF HOST‐PARASITE COSPECIATION , 1997, Evolution; international journal of organic evolution.

[37]  A. Edwards,et al.  The reconstruction of evolution , 1963 .

[38]  Tamir Tuller,et al.  Finding a maximum likelihood tree is hard , 2006, JACM.

[39]  Elchanan Mossel,et al.  Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[40]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[41]  Naoki Abe,et al.  On the computational complexity of approximating distributions by probabilistic automata , 1990, Machine Learning.

[42]  Elchanan Mossel,et al.  Recursive reconstruction on periodic trees , 1998, Random Struct. Algorithms.

[43]  Andris Ambainis,et al.  Nearly tight bounds on the learnability of evolution , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[44]  David P. Mindell,et al.  Molecular evidence of HIV-1 transmission in a criminal case , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Christian Borgs,et al.  First to market is not everything: an analysis of preferential attachment with fitness , 2007, STOC '07.

[46]  R. Durrett Probability: Theory and Examples , 1993 .

[47]  Elchanan Mossel,et al.  Submodularity of Influence in Social Networks: From Local to Global , 2010, SIAM J. Comput..

[48]  M Steel,et al.  Links between maximum likelihood and maximum parsimony under a simple model of site substitution. , 1997, Bulletin of mathematical biology.

[49]  Jian Ni,et al.  A Markov Random Field Approach to Multicast-Based Network Inference Problems , 2006, 2006 IEEE International Symposium on Information Theory.

[50]  B. Yu,et al.  Time-varying network tomography: router link data , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[51]  Donald F. Towsley,et al.  Multicast-based inference of network-internal loss characteristics , 1999, IEEE Trans. Inf. Theory.

[52]  Robert Nowak,et al.  Network Tomography: Recent Developments , 2004 .

[53]  Tamir Tuller,et al.  Maximum Likelihood of Evolutionary Trees Is Hard , 2005, RECOMB.

[54]  Fabio Martinelli,et al.  Fast mixing for independent sets, colorings, and other models on trees , 2004, SODA '04.

[55]  R. Lyons Random Walks and Percolation on Trees , 1990 .

[56]  A. Sinclair,et al.  Glauber Dynamics on Trees: Boundary Conditions and Mixing Time , 2003, math/0307336.

[57]  Ronitt Rubinfeld,et al.  On the learnability of discrete distributions , 1994, STOC '94.

[58]  Elchanan Mossel Reconstruction on Trees: Beating the Second Eigenvalue , 2001 .

[59]  M. Ledoux The concentration of measure phenomenon , 2001 .

[60]  N. Abe On the computational compulexity of approximating probability distributions by probabilistic automata , 1992 .

[61]  Joseph T. Chang,et al.  Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. , 1996, Mathematical biosciences.

[62]  Donald F. Towsley,et al.  Multicast-based inference of network-internal delay distributions , 2002, TNET.

[63]  J. Farris A Probability Model for Inferring Evolutionary Trees , 1973 .

[64]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[65]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[66]  S. Yokoyama,et al.  Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  F. Spitzer Markov Random Fields on an Infinite Tree , 1975 .

[68]  M. Steel Recovering a tree from the leaf colourations it generates under a Markov model , 1994 .

[69]  Y. Peres,et al.  Broadcasting on trees and the Ising model , 2000 .

[70]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[71]  M. Mézard,et al.  Reconstruction on Trees and Spin Glass Transition , 2005, cond-mat/0512295.

[72]  David S. Johnson,et al.  The computational complexity of inferring rooted phylogenies by parsimony , 1986 .

[73]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[74]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[75]  Alessandro Panconesi,et al.  Ancestral Maximum Likelihood of Evolutionary Trees Is Hard , 2003, WABI.

[76]  Manfred K. Warmuth,et al.  Learning integer lattices , 1990, COLT '90.

[77]  R. Graham,et al.  The steiner problem in phylogeny is NP-complete , 1982 .

[78]  Tandy J. Warnow,et al.  Parsimony is Hard to Beat , 1997, COCOON.

[79]  Sampath Kannan,et al.  Efficient algorithms for inverting evolution , 1999, JACM.

[80]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[81]  S. Roch Bounding Fastest Mixing , 2004 .

[82]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[83]  J. Ruiz,et al.  On the purity of the limiting gibbs state for the Ising model on the Bethe lattice , 1995 .

[84]  Elchanan Mossel Distorted Metrics on Trees and Phylogenetic Forests , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[85]  Lior Pachter,et al.  The Mathematics of Phylogenomics , 2004, SIAM Rev..

[86]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[87]  R. Lyons The Ising model and percolation on trees and tree-like graphs , 1989 .

[88]  Elchanan Mossel,et al.  Survey: Information Flow on Trees , 2004 .

[89]  D. Thouless,et al.  A mean field spin glass with short-range interactions , 1986 .

[90]  K. Lange Reconstruction of Evolutionary Trees , 1997 .

[91]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[92]  Elchanan Mossel,et al.  Robust reconstruction on trees is determined by the second eigenvalue , 2004, math/0406447.

[93]  Elchanan Mossel,et al.  Learning nonsingular phylogenies and hidden Markov models , 2005, STOC '05.

[94]  H. Kesten,et al.  Additional Limit Theorems for Indecomposable Multidimensional Galton-Watson Processes , 1966 .

[95]  Christian N. S. Pedersen,et al.  Complexity of Comparing Hidden Markov Models , 2001, ISAAC.