Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists.

The Chromalveolata "supergroup" is a massive assemblage of single-celled and multicellular protists such as ciliates and kelps that remains to be substantiated in molecular trees. Recent multigene analyses place chromalveolates into two major clades, the SAR (Stramenopiles, Alveolata, and Rhizaria) and the Cryptophyta+Haptophyta. Here we determined 69 new sequences from different chromalveolates to study the interrelationships of its constituent phyla. We included in our trees, the novel groups Telonemia and Katablepharidophyta that have previously been described as chromalvoleate allies. The best phylogenetic resolution resulted from a 6-protein (actin, alpha-tubulin, beta-tubulin, cytosolic HSP70, BIP HSP70, HSP90) and a 5-protein (lacking HSP90) alignment that validated the SAR and cryptophyte+haptophyte clades with the inclusion of telonemids in the former and katablepharids in the latter. We assessed the Plastidophila hypothesis that is based on EF2 data and suggest this grouping may be explained by horizontal gene transfers involving the EF2 gene rather than indicating host relationships.

[1]  L. Hug,et al.  Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups” , 2009, Proceedings of the National Academy of Sciences.

[2]  Fabrice Not,et al.  Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. , 2007, Environmental microbiology.

[3]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[4]  H. Endoh,et al.  Reevaluation of the Evolutionary Position of Opalinids Based on 18S rDNA,and α- and β-Tubulin Gene Phylogenies , 2005, Journal of Molecular Evolution.

[5]  K. Jakobsen,et al.  Telonema antarcticum sp. nov., a common marine phagotrophic flagellate. , 2005, International journal of systematic and evolutionary microbiology.

[6]  N. B. Petrov,et al.  The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Vaulot,et al.  Picobiliphytes: A Marine Picoplanktonic Algal Group with Unknown Affinities to Other Eukaryotes , 2007, Science.

[8]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[9]  A. Simpson,et al.  Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. , 2006, Molecular biology and evolution.

[10]  N. Patron,et al.  Gene Replacement of Fructose-1,6-Bisphosphate Aldolase Supports the Hypothesis of a Single Photosynthetic Ancestor of Chromalveolates , 2004, Eukaryotic Cell.

[11]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[12]  Y. Inagaki,et al.  Multiple Gene Phylogenies Support the Monophyly of Cryptomonad and Haptophyte Host Lineages , 2007, Current Biology.

[13]  B. Lang,et al.  Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans , 2007, Current Biology.

[14]  Y. Inagaki,et al.  Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. , 2004, Systematic biology.

[15]  Debashish Bhattacharya,et al.  A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Archibald,et al.  The eukaryotic tree of life: endosymbiosis takes its TOL. , 2008, Trends in ecology & evolution.

[17]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[18]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[19]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[20]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[21]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[22]  Debashish Bhattacharya,et al.  The single, ancient origin of chromist plastids , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Susan M. Huse,et al.  Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing , 2008, PLoS genetics.

[24]  D. Bhattacharya,et al.  Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. , 2005, Molecular biology and evolution.

[25]  Purificación López-García,et al.  Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. , 2007, Molecular phylogenetics and evolution.

[26]  Eunsoo Kim,et al.  EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata , 2008, PloS one.

[27]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[28]  C. Delwiche,et al.  Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. , 2005, Molecular biology and evolution.

[29]  L. Katz,et al.  BMC Evolutionary Biology BioMed Central Research article Broadly sampled multigene trees of eukaryotes , 2008 .

[30]  Fabien Burki,et al.  Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes , 2008, Biology Letters.

[31]  David E. Richardson,et al.  OnlineOpen: This , 2006 .

[32]  R. Andersen,et al.  Biology and systematics of heterokont and haptophyte algae. , 2004, American journal of botany.

[33]  P. Keeling,et al.  Nucleus-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Indicates a Single Origin for Chromalveolate Plastids , 2003 .

[34]  Emilie Lefèvre,et al.  The Molecular Diversity of Freshwater Picoeukaryotes Reveals High Occurrence of Putative Parasitoids in the Plankton , 2008, PloS one.

[35]  D. Bhattacharya,et al.  Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. , 2007, Molecular biology and evolution.

[36]  Kamran Shalchian-Tabrizi,et al.  Phylogenomics Reshuffles the Eukaryotic Supergroups , 2007, PloS one.

[37]  Yves Van de Peer,et al.  Evolutionary Relationships Among the Eukaryotic Crown Taxa Taking into Account Site-to-Site Rate Variation in 18S rRNA , 1997, Journal of Molecular Evolution.

[38]  T. Cavalier-smith Only six kingdoms of life , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[40]  P. Keeling,et al.  On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. , 2005, International journal of systematic and evolutionary microbiology.

[41]  T. Cavalier-smith,et al.  Phylogenetic Analysis of Eukaryotes Using Heat-Shock Protein Hsp90 , 2003, Journal of Molecular Evolution.

[42]  P. Kugrens,et al.  Systematics of the enigmatic kathablepharids, including EM characterization of the type species, Kathablepharis phoenikoston, and new observations on K. remigera comb.nov. , 1999, Protist.

[43]  K. Jakobsen,et al.  Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia. , 2007, Protist.

[44]  M. Sogin,et al.  Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. , 1991, Molecular and biochemical parasitology.

[45]  M. Melkonian,et al.  Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. , 1995, Molecular biology and evolution.

[46]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[47]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[48]  T. Cavalier-smith,et al.  Eukaryote kingdoms: seven or nine? , 1981, Bio Systems.

[49]  Laura Wegener Parfrey,et al.  Evaluating Support for the Current Classification of Eukaryotic Diversity , 2006, PLoS genetics.

[50]  A. Weber,et al.  The origin and establishment of the plastid in algae and plants. , 2007, Annual review of genetics.

[51]  D. Vaulot,et al.  Telonemia, a new protist phylum with affinity to chromist lineages , 2006, Proceedings of the Royal Society B: Biological Sciences.

[52]  D. Moreira,et al.  Present status of the molecular ecology of kathablepharids. , 2006, Protist.

[53]  Naiara Rodríguez-Ezpeleta,et al.  Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes , 2005, Current Biology.

[54]  M. Sogin,et al.  Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  N. Okamoto,et al.  The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta divisio nova/ Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. , 2005, Protist.

[56]  Debashish Bhattacharya,et al.  Horizontal gene transfer in chromalveolates , 2007, BMC Evolutionary Biology.

[57]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.